Drag reduction on airfoils using arrays of micro-actuators is one application of so-called Aero-MEMS. These microactuators interact with TS instabilities (Tollmien-Schlichting waves) inside a transitional boundary layer by superimposing artificially generated counterwaves in order to delay the transition process. These actuators need to exhibit a relatively large stroke at relatively high operational frequencies when operated at high Mach numbers. For this purpose, a novel micromachined mechanical amplification unit for increasing the stroke of piezoelectric microactuators up to high frequencies is proposed. The mechanical lever is provided by a sliced nickel titanium membrane. In this work, the actuator is explained in detail and wind tunnel experiments are carried out to investigate the effect of this mechanically amplified piezoelectric microactuator on thin transitional boundary layers. The experiments have been carried out in the transonic wind tunnel facility of the Berlin University of Technology on an unswept test wing with an NACA 0004 leading edge. The effectiveness of the actuator for flow control applications is determined in an open-loop setup consisting of one actuator having a relevant spanwise extension and a microstructured hot film sensor array located downstream. The aerodynamic results at Mach 0.33 are presented and discussed. It is shown that the actuator influences TS wave specific frequencies between 2.5 kHz and 7.4 kHz. The actuator amplitude is large enough to influence a transitional boundary layer significantly without bypassing the natural transition process which makes this type of micromachined actuator a candidate for high speed TS-control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.