In some problems there is information about the destination of a moving object. An example is an airliner flying from an origin to a destination. Such problems have three main components: an origin, a destination, and motion in between. To emphasize that the motion trajectories end up at the destination, we call them destination-directed trajectories. The Markov sequence is not flexible enough to model such trajectories. Given an initial density and an evolution law, the future of a Markov sequence is determined probabilistically. One class of conditionally Markov (CM) sequences, called the CM L sequence (including the Markov sequence as a special case), has the following main components: a joint endpoint density (i.e., an initial density and a final density conditioned on the initial) and a Markov-like evolution law. This paper proposes using the CM L sequence for modeling destination-directed trajectories. It is demonstrated how the CM L sequence enjoys several desirable properties for destination-directed trajectory modeling. Some simulations of trajectory modeling and prediction are presented for illustration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.