<p>The directional dependencies of different climate indices are explored using the Liang-Kleeman information flow in order to disentangle the influence of certain regions over the globe on the development of low-frequency variability of others. Seven key indices (the sea-surface temperature in El-Ni&#241;o 3.4 region, the Atlantic Multidecadal Oscillation, the North Atlantic Oscillation, the North Pacific America pattern, the Arctic Oscillation, the Pacifid Decadal Oscillation, the Tropical North Atlantic index), together with three local time series located in Western Europe (Belgium), are selected. The analysis is performed on time scales from a month to 5 years by using a sliding window as filtering procedure.</p><p>A few key new results on the remote influence emerge: (i) The Arctic Oscillation plays a key role at short time (monthly) scales on the dynamics of the North Pacific and North Atlantic; (ii) the North Atlantic Oscillation is playing a global role at long time scales (several years); (iii) the Pacific Decadal Oscillation is indeed slaved to other influences; (iv) the local observables over Western Europe influence the variability on the ocean basins on long time scales. These results further illustrate the power of the Liang-Kleeman information flow in disentangling the dynamical dependencies.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.