Nanoscale thermally assisted hydrodynamic melt perturbations induced by ultrafast laser energy deposition in noble-metal films produce irreversible nanoscale translative mass redistributions and results in formation of radially-symmetric frozen surface structures. We demonstrate that the final three-dimensional (3D) shape of the surface structures formed after re-solidification of the molten part of the film is governed by incident laser fluence and, more importantly, predicted theoretically via molecular dynamics modeling. Considering the underlying physical processes associated with laser-induced energy absorption, electron-ion energy exchange, acoustic relaxation and hydrodynamic flows, the theoretical approach separating "slow" and "fast" physical processes and combining hybrid analytical two-temperature calculations, scalable molecular-dynamics simulations, and a semi-analytical thin-shell model was shown to provide accurate prediction of the final nanoscale solidified morphologies, fully consistent with direct electron-microscopy visualization of nanoscale focused ion-beam cuts of the surface structures produced at different incident laser fluences. Finally, these results are in reasonable quantitative agreement with mass distribution profiles across the surface nanostructures, provided by their noninvasive and non-destructive nanoscale characterization based on energy-dispersive x-ray fluorescence spectroscopy, operating at variable electron-beam energies.
Photoluminescence (PL) from femtosecond laser modified regions inside cubic-boron nitride (c-BN) was measured under UV and visible light excitation. Bright PL at the red spectral range was observed, with a typical excited state lifetime of ∼ 4 ns. Sharp emission lines are consistent with PL of intrinsic vibronic defects linked to the nitrogen vacancy formation (via Frenkel pair) observed earlier in high energy electron irradiated and ion-implanted c-BN. These, formerly known as the radiation centers, RC1, RC2, and RC3 have been identified at the locus of the voids formed by single fs-laser pulse. The method is promising to engineer color centers in c-BN for photonic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.