The highly ordered and aligned ZnO nanorod arrays were grown on p-GaN substrates via a facile hydrothermal process assisted by the inverted self-assembled monolayer template, from which the ZnO nanorod/p-GaN heterojunction light emitting diodes (LEDs) were fabricated. The ZnO nanorod-based LEDs exhibit a stronger ultraviolet emission of 390 nm than the ZnO film-based counterpart, which is attributed to the low density of interfacial defects, the improved light extraction efficiency, and carrier injection efficiency through the nano-sized junctions. Furthermore, the LED with the 300 nm ZnO nanorods has a better electroluminescence performance compared with the device with the 500 nm nanorods.
We demonstrate the surface plasmon (SP) enhanced n-ZnO/AlN/p-GaN light-emitting diodes (LEDs) by inserting the Ag nanoparticles (NPs) between the ZnO and AlN layers. The ultraviolet/violet near band edge emission of the device is significantly enhanced while the green defect-related emission is modestly suppressed compared to the LEDs without Ag NPs. The red-shift of electroluminescence (EL) peak and the reduced photoluminescence decay lifetime of ZnO suggest that the improved EL performance of the device with Ag NPs is attributed to the resonant coupling between excitons in ZnO and localized SPs in Ag NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.