Long, shallow microchannels embedded in thick, soft materials are widely used in microfluidic devices for lab-on-a-chip applications. However, the bulging effect caused by fluid–structure interactions between the internal viscous flow and the soft walls has not been completely understood. Previous models either contain a fitting parameter or are specialized to channels with plate-like walls. This work is a theoretical study of the steady-state response of a compliant microchannel with a thick wall. Using lubrication theory for low-Reynolds-number flows and the theory for linearly elastic isotropic solids, we obtain perturbative solutions for the flow and deformation. Specifically, only the channel's top wall deformation is considered, and the ratio between its thickness
t
and width
w
is assumed to be (
t
/
w
)
2
≫1. We show that the deformation at each stream-wise cross section can be considered independently, and that the top wall can be regarded as a simply supported rectangle subject to uniform pressure at its bottom. The stress and displacement fields are found using Fourier series, based on which the channel shape and the hydrodynamic resistance are calculated, yielding a new flow rate–pressure drop relation without fitting parameters. Our results agree favourably with, and thus rationalize, previous experiments.
Soft hydraulics, which addresses the interaction between an internal flow and a compliant conduit, is a central problem in microfluidics. We analyze Newtonian fluid flow in a rectangular duct with a soft top wall at steady state. The resulting fluid–structure interaction is formulated for both vanishing and finite flow inertia. At the leading-order in the small aspect ratio, the lubrication approximation implies that the pressure only varies in the streamwise direction. Meanwhile, the compliant wall's slenderness makes the fluid–solid interface behave like a Winkler foundation, with the displacement fully determined by the local pressure. Coupling flow and deformation and averaging across the cross section leads to a one-dimensional reduced model. In the case of vanishing flow inertia, an effective deformed channel height is defined rigorously to eliminate the spanwise dependence of the deformation. It is shown that a previously used averaged height concept is an acceptable approximation. From the one-dimensional model, a friction factor and the corresponding Poiseuille number are derived. Unlike the rigid duct case, the Poiseuille number for a compliant duct is not constant but varies in the streamwise direction. Compliance can increase the Poiseuille number by a factor of up to four. The model for finite flow inertia is obtained by assuming a parabolic vertical variation of the streamwise velocity. To satisfy the displacement constraints along the edges of the channel, weak tension is introduced in the streamwise direction to regularize the Winkler-foundation-like model. Matched asymptotic solutions of the regularized model are derived.
Two-phase outflows refer to situations where the interface formed between two immiscible incompressible fluids passes through open portions of the domain boundary. We present several new forms of open boundary conditions for two-phase outflow simulations within the phase field framework, as well as a rotational pressure correction based algorithm for numerically treating these open boundary conditions. Our algorithm gives rise to linear algebraic systems for the velocity and the pressure that involve only constant and time-independent coefficient matrices after discretization, despite the variable density and variable viscosity of the two-phase mixture. By comparing simulation results with theory and the experimental data, we show that the method produces physically accurate results. We also present numerical experiments to demonstrate the long-term stability of the method in situations where large density contrast, large viscosity contrast, and backflows occur at the two-phase open boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.