The modulation p-doping technique has emerged as an effective way to optimize the carrier dynamics process of quantum dot (QD) structures. Here, the laser structures based on the 1.3 μm multiple-layer InAs/GaAs QD were fabricated with and without modulation p-doping. The carrier relaxation rate was increased after modulation p-doping, as demonstrated by transient absorption spectroscopy. The higher relaxation rate in p-doped QDs could be explained by more rapid carrier–carrier scattering process originating from increasing of the hole quasi-Fermi-level movement that increases the probability of occupancy of the valence states. In addition, the lasing behavior of Fabry–Perot lasers with and without modulation p-doping was investigated and compared. It was found that the ground state (GS) lasing in the absence of facet coating was successfully achieved in a p-doped laser diode with short cavity length (400 μm), which can be attributed to the higher GS saturation gain caused by p-doping. With assistance of a designed TiO2/SiO2 facet coating whose central wavelength (∼1480 nm) is far beyond the lasing wavelength of 1310 nm, the GS lasing could be realized in a laser diode with short cavity lengths (300 μm) under continuous wave operation at room temperature, implying great potential for the development of low-cost and high-speed directly modulated lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.