This is the second part of a study on the assessment of the Noah land surface model (LSM) in simulating surface water and energy budgets in the high-elevation source region of the Yellow River. Here, there is a focus on turbulent heat fluxes and heat transport through the soil column during the monsoon season, whereas the first part of this study deals with the soil water flow. Four augmentations are studied for mitigating the overestimation of turbulent heat flux and underestimation of soil temperature measurements: 1) the muting effect of vegetation on the thermal heat conductivity is removed from the transport of heat from the first to the second soil layer, 2) the exponential decay factor imposed on is calculated using the ratio of the leaf area index (LAI) over the green vegetation fraction (GVF), 3) Zilitinkevich’s empirical coefficient for turbulent heat transport is computed as a function of the momentum roughness length , and 4) the impact of organic matter is considered in the parameterization of the thermal heat properties. Although usage of organic matter for calculating improves the correspondence between the estimates and laboratory measurements of heat conductivities, it is shown to have a relatively small impact on the Noah LSM performance even for large organic matter contents. In contrast, the removal of the muting effect of vegetation on and the parameterization of greatly enhances the soil temperature profile simulations, whereas turbulent heat flux and surface temperature computations mostly benefit from the modified formulation. Further, the nighttime surface temperature overestimation is resolved from a coupled land–atmosphere perspective.
We report a unique multiyear L-band microwave radiometry dataset collected at the Maqu site on the eastern Tibetan Plateau and demonstrate its utilities in advancing our understandings of microwave observations of land surface processes. The presented dataset contains measurements of L-band brightness temperature by an ELBARA-III microwave radiometer in horizontal and vertical polarization, profile soil moisture and soil temperature, turbulent heat fluxes, and meteorological data from the beginning of 2016 till August 2019, while the experiment is still continuing. Auxiliary vegetation and soil texture information collected in dedicated campaigns are also reported. This dataset can be used to validate the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellite based observations and retrievals, verify radiative transfer model assumptions and validate land surface model and reanalysis outputs, retrieve soil properties, as well as to quantify land-atmosphere exchanges of energy, water and carbon and help to reduce discrepancies and uncertainties in current Earth System Models (ESM) parameterizations. Measurement cases in winter, pre-monsoon, monsoon and post-monsoon periods are presented.
[1] Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the QinghaiTibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to changes in climate and grazing regimes.Citation: Yi, S., N. Li, B. Xiang, X. Wang, B. Ye, and A. D. McGuire (2013), Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.