The precipitation-hardening behavior of aluminum alloy AA6111 during artificial aging and the influence of prior natural aging on the aging behavior were investigated. The evolution of microstructure was studied using quantitative transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The evolution of the relative volume fraction of precipitates for the solutiontreated alloy was determined using isothermal calorimetry and a new analysis based on the DSC technique. Quantitative TEM was also used to obtain the rate of precipitation of microscopically resolvable phases during aging at 180 °C. Three types of precipitates, i.e., unresolved Guinier-Preston (GP) zones, bЉ, and QЈ, were found to form during aging at 180 °C. The evolution of yield strength was related to the evolution of microstructure. It was found that the high hardening rate during artificial aging for the solution-treated alloy is due to the rapid precipitation of the bЉ phase. Natural aging prior to artificial aging was found to decrease the rate of precipitation of bЉ. The slow hardening rate for the naturally aged alloy was attributed to the slower nucleation and growth of bЉ phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.