Bone weight, defined as the total weight of the bones in all the forequarter and hindquarter joints, can reflect somebody conformation traits and skeletal diseases. To gain a better understanding of the genetic determinants of bone weight, we used a composite strategy including multimarker and rare-marker association to perform genomewide association studies (GWAS) for that character in Simmental cattle. Our strategy consisted of three models: (i) A traditional linear mixed model (LMM) was applied (Q+K-LMM); (ii) single nucleotide polymorphisms (SNPs) with p-values less than .05 from the LMM were selected to undergo the least absolute shrinkage and selector operator (Lasso) in the second stage (LMM-Lasso); (iii) genes containing two or more rare SNPs were examined by performing the sequence kernel association test (gene-based SKAT). A total of 1,225 cattle were genotyped with an Illumina BovineHD BeadChip containing 770,000 SNPs. After the quality-control procedures, 1,217 individuals with 608,696 common SNPs and 105,787 rare SNPs (with 0.001 < minor allele frequency [MAF] <0.05) remained in the sample for analysis. A traditional LMM successfully mapped three genes associated with bone weight, while LMM-Lasso identified nine genes, which included all genes found by traditional LMM. Only a single gene, EPHB3, surpassed the significance threshold after Bonferroni correction in gene-based SKAT. In conclusion, based on functional annotation and results from previous endeavours, we believe that LCORL, RIMS2, LAP3, PRKAR2B, CHSY1, MAP2K6 and EPHB3 are candidate genes for bone weight. In general, such a comprehensive strategy for GWAS may be useful for researchers seeking to probe the full genetic architecture underlying economic traits in livestock.
Sika deer are known to prefer oak leaves, which are rich in tannins and toxic to most mammals; however, the genetic mechanisms underlying their unique ability to adapt to living in the jungle are still unclear. In identifying the mechanism responsible for the tolerance of a highly toxic diet, we have made a major advancement in the elucidation of the genomics of sika deer. We generated the first high-quality, chromosome-level genome assembly of sika deer and measured the correlation between tannin intake and RNA expression in 15 tissues through 180 experiments. Comparative genome analyses showed that the UGT and CYP gene families are functionally involved in the adaptation of sika deer to high-tannin food, especially the expansion of UGT genes in a subfamily. The first chromosome-level assembly and genetic characterization of the tolerance toa highly toxic diet suggest that the sika deer genome will serve as an essential resource for understanding evolutionary events and tannin adaptation. Our study provides a paradigm of comparative expressive genomics that can be applied to the study of unique biological features in non-model animals.
Induced pluripotent stem cell(iPSC) technology promises to be an inexhaustible source of any type of cell needed for therapeutic and research purposes.It is unclear that how distal enhancer-promoter associations/3D chromatin conformation involving in the capacity of self-renewal and pluripotency maintenance. In this study, we have selected a few defined enhancer-promoter associations. After screening of enhancer specificity and activity individually, we design the different combinations and transfect these enhancers into the MEF cells. We simultaneously transfect 7 determined enhancers which represents various specific distal chromatin associations into a GFP tracing MEF cell line. We observe that the MEF cells start generating iPS-like clones at day 22. Importantly, our validations with three germ layer marker genes and in vitro experiments have further confirmed the pluripotency of these clones. Here, our study proposes a potential de novo method of a low-genetic risk iPS generation by introducing spatiotemporal distal chromatin associations. This result also paves out the way on utilizing 3D genomic information to alter cell identity and reprogramming for potential therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.