A novel interpenetrating C/Mg-Zn-Mn composite was fabricated by infiltrating Mg-Zn-Mn alloy into porous carbon using suction casting technique. The microstructure, mechanical properties and corrosion behaviors of the composite have been evaluated by means of SEM, XRD, mechanical testing and immersion test. It was shown that the composite had a compact structure and the interfacial bonding between Mg-Zn-Mn alloy and carbon scaffold was very well. The composite had an ultimate compressive strength of (195 ± 15) MPa, which is near with the natural bone (2-180 MPa) and about 150-fold higher than that of the original porous carbon scaffold, and it still retained half of the strength of the bulk Mg-Zn-Mn alloy. The corrosion test indicated that the mass loss percentage of the composite was 52.9% after 30 days' immersion in simulated body fluid (SBF) at 37 ± 0.5 °C, and the corrosion rates were 0.043 mg/cm(2)h and 0.028 mg/cm(2)h after 3 and 7 days' immersion, respectively. The corrosion products on the composite surface were mainly Mg(OH)2 and hydroxyapatite (HA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.