Examination of a group of mutants of plasmid NR1 that had lost the expression of IncFII plasmid incompatibility (Inc-) revealed a group that had also lost replication proficiency (Rep-). These mutants were obtained from plasmids in which the NR1 replication control region was present in a cointegrate with plasmid pBR322. Whereas the wild-type parental cointegrate plasmid was capable of replicating in a polA host owing to the PolA independence of NR1 replication, the mutants were not able to transform a polA host. Losses of both expression of IncFII plasmid incompatibility and replication proficiency were found to result from the same single base-pair substitution in four independently isolated Inc- Rep- mutants. The mutation inactivates promoter PE for the transcription of RNA-E, a trans-acting repressor of translation of the essential RepA1 replication initiation protein of NR1. Although the loss of RNA-E synthesis had been expected to increase the expression of repA1, the efficiency of translation of repA1 mRNA from these mutants was at least 100-fold lower than that from the wild type, as revealed by repA1-lacZ translational fusions. The PE mutation introduced a stop codon into a 24-amino-acid reading frame that precedes the repA1 gene and terminates just 2 bp downstream from the repA1 start codon. This putative leader peptide was also expressed in a lacZ translational fusion, and its expression was reduced by a factor of 10(4) by the PE mutation. The expression of the leader peptide and the expression of repA1 were regulated by RNA-E. These results suggest that the expression of repA1 is coupled to the translation of the leader peptide and that the repression of repA1 translation by RNA-E may occur via inhibition of the translation of the leader peptide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.