A multi-angle spatial compound imaging method was developed to suppress the speckles and artifacts in ultrasonic immersion testing using a single transducer. The multi-angle echo signals were acquired by an ultrasonic immersion testing system with different incident angles. With consideration of the acoustic difference between water and the specimen, the deviation of the time of flight (TOF) and refraction were corrected. Then the corrected signals were superimposed to reconstruct a multi-angle spatial compound image. The performance of the proposed method is assessed with quantitative accuracy, signal to noise ratio (SNR) and contrast to noise ratio (CNR). Compared with the conventional B-scan imaging, the quantitative accuracy of the longitudinal and lateral sizes of the defect holes in proposed method are respectively improved by an average of 12.3% and 15.8%, and the SNR and CNR are increased by an average of 6.13 dB and 2.65 dB, respectively. The results show the advantage of the proposed multi-angle spatial compound imaging for ultrasonic immersion testing in terms of the less quantitative error and artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.