Titanium particles embedded on peri-implant tissues are associated with a variety of detrimental effects. Given that the characteristics of these detached fragments (size, concentration, etc.) dictate the potential cytotoxicity and biological repercussions exerted, it is of paramount importance to investigate the properties of these debris. This study compares the characteristics of particles released among different implant systems (Group A: Straumann, Group B: BioHorizons and Group C: Zimmer) during implantoplasty. A novel experimental system was utilized for measuring and collecting particles generated from implantoplasty. A scanning mobility particle sizer, aerodynamic particle sizer, nano micro-orifice uniform deposit impactor, and scanning electron microscope were used to collect and analyze the particles by size. The chemical composition of the particles was analyzed by highly sensitive microanalysis, microstructures by scanning electron microscope and the mechanical properties by nanoindentation equipment. Particles released by implantoplasty showed bimodal size distributions, with the majority of particles in the ultrafine size range (<100 nm) for all groups. Statistical analysis indicated a significant difference among all implant systems in terms of the particle number size distribution (p < 0.0001), with the highest concentration in Group B and lowest in Group C, in both fine and ultrafine modes. Significant differences among all groups (p < 0.0001) were also observed for the other two metrics, with the highest concentration of particle mass and surface area in Group B and lowest in Group C, in both fine and ultrafine modes. For coarse particles (>1 µm), no significant difference was detected among groups in terms of particle number or mass, but a significantly smaller surface area was found in Group A as compared to Group B (p = 0.02) and Group C (p = 0.005). The 1 first minute of procedures had a higher number concentration compared to the second and third minutes. SEM-EDS analysis showed different morphologies for various implant systems. These results can be explained by the differences in the chemical composition and microstructures of the different dental implants. Group B is softer than Groups A and C due to the laser treatment in the neck producing an increase of the grain size. The hardest implants were those of Group C due to the cold-strained titanium alloy, and consequently they displayed lower release than Groups A and B. Implantoplasty was associated with debris particle release, with the majority of particles at nanometric dimensions. BioHorizons implants released more particles compared to Straumann and Zimmer. Due to the widespread use of implantoplasty, it is of key importance to understand the characteristics of the generated debris. This is the first study to detect, quantify and analyze the debris/particles released from dental implants during implantoplasty including the full range of particle sizes, including both micro- and nano-scales.
Due to the layered texture and sedimentation environment, shale formations usually characterized as high heterogeneity and anisotropy in in-situ stresses. During the hydraulic fracturing process, fracturing fluid is injected at a pressure above the formation pressure. This injection process changes the local in-situ stresses in a quick and significant manner while generating fracture systems. In the regions of existing geo-features such as natural fractures and faults, local stress changes could lead to the activation of formation movement, which in return impacts the casing going through the locale. Casing deformations during hydraulic fracturing have been observed in Southwest China Sichuan basin, and it have impeded completion operations in certain regions. In order to ensure further exploring, we analyszed this phenomenon and propose practical solutions for fault reactivation prevention. To study the mechanism of local slippage and the impact on casing integrity, we set up a 2D finite element model with considerations of in-situ stresses acquired from fields, natural fracture orientation from available seismic data, and we simulated water injection process in order to quantify potential slippage and displacement. The finite element model features an integration of casing, cementing, and formation under the hydraulic fracturing conditions. For particular parameters such as permeability and leak-off coefficeint, we conducted sensitivity studies to quantify their impacts on displacement amount. The theoretical geomechanics studies indicate water induced slippage existence in shale due to its fracture reactivation. Using the finite element model, this paper interpreted and quantified the impact of fracturing fluid injection on casing from strike-slip fault regiems. Simulation results revealed that water injection into natural fractured shale formation can induce finite displacement characterized as fault slippage along discontinues surfaces. This study could help engineers to have a better prediction as how hydraulic fracture intereact with subsurface structures and potential risks that comes along with it. This type of casing damage can be reduced by improving well trajectory design, completion operation, and higher strength level of casing-cement system. The findings from this study not only can be applied to naturally fractured formations, but also to other pre-existing geo-features such as discountinues surfaces. It also provides fundamental basis for more practical solution to find the measures and overcome the casing deformation problems in hydraulic fracturing.
Oil production from shale and tight formations will increase to more than 6 million barrels per day (b/d) in the coming decade, making up most of total U.S. oil production (> 50%). However, achieving an accurate formation evaluation of shale faces many complex challenges. One of the complexities is the accurate estimation of shale properties from well logs, which is initially designed for conventional reservoirs. When we use the well logs to obtain shale properties, they often cause some deviations. Therefore, in this work, we combine cores and well logs together to provide a more accurate guideline for estimation of total organic carbon, which is primarily of interest to petroleum geochemists and geologists. Our work is based on Archie's equation. Resistivity log will lead to some incorrect results, such as total resistivity, when we follow the conventional interpretation procedure in well logs. Porosity is another complex parameter, which cannot be determined only by well log, i.e. density, NMR, and Neutron log. Therefore, the flowchart of TOC calculation includes five main parts: (I) the shale content calculation using Gamma log; (II) the determination of shale distributions using Density and Neutron logs and cross-plot; (III) the calculation of total resistivity at different distribution types; (IV) obtaining porosity using core analysis, NMR and density logs; and (V) the calculation of TOC from modified Archie's equation. The results indicate that the shale content has a strong effect on estimation of water saturation and hydrocarbon saturation. Especially, the effect of shale content is exacerbated at a low water saturation. A more accurate flowchart for TOC calculation is established. Based on Archie's equation, we modify total resistivity and porosity by combining Gamma Log, Density Log, Neutron Log, NMR Log, and Cross-plot. An easier way to estimate porosity is provided. We combine the matrix density and kerogen density together and obtain them from core analysis. Poupon's et al. (1954) laminar model has some limitations when applying in shale reservoirs, especially at a low porosity. Literature surveys show few studies on the flowchart of TOC calculation in shale reservoirs. This paper provides some insights into challenges of well logs, core analysis in shale reservoirs and a more accurate guideline of TOC calculation in shale reservoirs.
Heavy oil production presents tremendous challenges in subsurface development, production wells, and surface transport. Therefore, highly efficient transportation calls for innovative engineering processes to facilitate the transport from subsurface to downstream. In Block 192- Peru, previous production experience indicated that mixing light oil at the well production manifold to heavy oil stream was a feasible option. However, this option strongly depends on the availability of light oil. The aim of this study is to present alternatives to improve heavy oil transportation performance in the block 192. Results of a fundamental study conducted on the heavy oil transportation performance in Jibaro, Jibarito and San Jacinto fields are presented herein where multiple possibilities are evaluated to reduce the ratio of light oil per barrel of heavy oil production (i.e. to increase the efficiency of the diluent). This study provides guidelines to select one of the three following methods: diluent injection, emulsion injection or reservoir-based technology. Previous operators performed extensive reservoir characterization and simulation modeling which led to recovering over 200 million barrels of heavy oil (up to July 2015) through Vivian sands. Therefore, this confirmed the suitability of introducing new methods to feasible transport and sell heavy oil. Jibaro, Jibarito and San Jacinto fields are used in this study due to their significant heavy oil reserves. The complexity of these fields includes high water cut production, Heli transportable logistics and high cost of produced oil. The first method proposed in this study consists of injecting a diluent in the extraction stream of heavy oil up. The second method uses emulsion water to transport high viscous oil. The third method involves applying a technology in the extraction process to reduce the viscosity of heavy oil, and in-situ upgrade the heavy oil up to sales specifications with a consideration of long distance between fields. This study concludes that a conceptual engineering and a selection of a compatible diluent and solvent are critical. Finally, environmental permitting increases the complexity of any project in the area and the possibility to introduce new technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.