An approach to study the mechanism of mining-induced subsidence, using a combination of phase-stacking and sub-pixel offset-tracking methods, is reported. In this method, land subsidence with a small deformation gradient was calculated using time-series differential interferometric synthetic aperture radar (D-InSAR) data, whereas areas with greater subsidence were calculated by a sub-pixel offset-tracking method. With this approach, time-series data for mining subsidence were derived in Yulin area using 11 TerraSAR-X (TSX) scenes from 13 December 2012 to 2 April 2013. The maximum mining subsidence and velocity values were 4.478 m and 40 mm/day, respectively, which were beyond the monitoring capabilities of D-InSAR and advanced InSAR. The results were compared with the GPS field survey data, and the root mean square errors (RMSE) of the results in the strike and dip directions were 0.16 m and 0.11 m, respectively. Four important results were obtained from the time-series subsidence in this mining area: (1) the mining-induced subsidence entered the residual deformation stage within about 44 days; (2) the advance angle of influence changed from 75.6° to 80.7°; (3) the prediction parameters of mining subsidence; (4) three-dimensional OPEN ACCESSRemote Sens. 2015, 7 9167 deformation. This method could be used to predict the occurrence of mining accidents and to help in the restoration of the ecological environment after mining activities have ended.
ABSTRACT:A new solution algorithm that combined D-InSAR and probability integral method was proposed to generate the three dimensional deformation in mining area. The details are as follows: according to the geological and mining data, the control points set should be established, which contains correct phase unwrapping points in subsidence basin edge generated by D-InSAR and several GPS points; Using the modulus method to calculate the optimum parameters of probability integral prediction; Finally, generate the three dimensional deformation of mining work face by the parameters. Using this method, the land subsidence with big deformation gradients in mining area were correctly generated by example TerraSAR-X images. The results of the example show that this method can generate the correct mining subsidence basin with a few surface observations, and it is much better than the results of D-InSAR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.