We report a plasma-based strong THz source generated in intense laser-solid interactions at relativistic intensities >1018 W/cm2. Energies up to 50 μJ/sr per THz pulse is observed when the laser pulses are incident onto a copper foil at 67.5°. The temporal properties of the THz radiation are measured by a single shot, electro-optic sampling method with a chirped laser pulse. The THz radiation is attributed to the self-organized transient fast electron currents formed along the target surface. Such a source allows potential applications in THz nonlinear physics and provides a diagnostic of transient currents generated in intense laser-solid interactions.
The effects of laser incidence angle on lateral fast electron transport at front target surface, when a plasma is preformed, irradiated by intense (>10 18 W/cm 2 ) laser pulses, are studied by K α imaging technique and electron spectrometer. A horizontally asymmetric K α halo, resulting from directional lateral electron transport and energy deposition, is observed for a large incidence angle (70°). Moreover, a group of MeV high energy electrons is emitted along target surface. It is believed that the deformed preplasma and the asymmetrical distribution of self-generated magnetic field, at large incidence angle, play an important role in the directional lateral electron transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.