Superconducting quantum computing is experiencing a tremendous growth. Although major milestones have already been achieved, useful quantum-computing applications are hindered by a variety of decoherence phenomena. Decoherence due to two-level systems (TLSs) hosted by amorphous dielectric materials is ubiquitous in planar superconducting devices. We use high-quality quasilumped element resonators as quantum sensors to investigate TLS-induced loss and noise. We perform two-tone experiments with a probe and pump electric field; the pump is applied at different power levels and detunings. We measure and analyze time series of the quality factor and resonance frequency for very long time periods, up to 1000 h. We additionally carry out simulations based on the TLS interacting model in presence of a pump field. We find that loss and noise are reduced at medium and high power, matching the simulations, but not at low power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.