ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, we present a complementary electrical characterization of individual upright standing and lying ZnO nanorods using conductive atomic force microscopy (C-AFM). Initially, the electrical properties of the arrays of upright standing ZnO NRs were characterized using two-dimensional current maps. The current maps were recorded simultaneously with the topography acquired by contact mode AFM. Further, C-AFM was utilized to determine the local current-voltage (I-V) characteristics of the top and side facets of individual upright standing NRs. Current-voltage characterization revealed a characteristic similar to that of a Schottky diode. Detailed discussion of the electrical properties is based on local I-V curves, as well as on the 2D current maps recorded from specific areas.
In this study, heat and polarization treatments were applied to poly(vinylidenefluoride-co-trifluoroethylene (PVDF-TrFE) films to improve their crystallinity and piezoelectric effect. Carbon-based nanomaterials (CBNs) of multiple dimensions (i.e., modified zero-dimensional (0D) carbon black (OCB), one-dimensional (1D) modified carbon nanotubes (CNT–COOH) and two-dimensional (2D) graphene oxide (GO)) were added to the copolymer to study the effects of different CBN dimensions on the crystallinity and piezoelectric effect of PVDF-TrFE films. Additionally, amphiphilic polymeric dispersants were added to improve the dispersibility of CBNs; the dispersant was synthesized by the amidation, and imidization reactions of styrene-maleic anhydride copolymer (SMAz) and polyoxyalkylene amine (M1000). Polymer solutions with different ratios of CBN to dispersant (z = 10:1, 5:1, 1:1, 1:5, 1:10) were prepared. The enhanced dispersibility enabled the fluorine atoms in the PVDF-TrFE molecular chain to more efficiently form hydrogen bonds with the –COOH group in the CBN, thereby increasing the content of the β crystal phase (the origin of the piezoelectric effect) of the film. Therefore, the resulting film exhibited a higher output voltage on the application side and better sensitivity on the sensing element. The addition of CNT–COOH and polymeric dispersants increased the β-phase content in PVDF-TrFE from 73.6% to 86.4%, which in turn raised the piezoelectric coefficient from 19.8 ± 1.0 to 26.4 ± 1.3 pC/N. The composite film-based pressure sensor also exhibited a high degree of sensitivity, which is expected to have commercial potential in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.