We study femtosecond-laser-pulse-induced electron emission from W(100), Al(110), and Ag(111) in the subdamage regime (1-44 mJ/cm 2 fluence) by simultaneously measuring the incident-light reflectivity, total electron yield, and electron-energy distribution curves of the emitted electrons. The total-yield results are compared with a space-charge-limited extension of the Richardson-Dushman equation for short-time-scale thermionic emission and with particle-in-a-cell computer simulations of femtosecond-pulsed-induced thermionic emission. Quantitative agreement between the experimental results and two calculated temperaturedependent yields is obtained and shows that the yield varies linearly with temperature beginning at a threshold electron temperature of -0.25 eV The particle-in-a-cell simulations also reproduce the experimental electronenergy distribution curves. Taken together, the experimental results, the theoretical calculations, and the results of the simulations indicate that thermionic emission from nonequilibrium electron heating provides the dominant source of the emitted electrons. Furthermore, the results demonstrate that a quantitative theory of space-charge-limited femtosecond-pulse-induced electron emission is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.