Straw mulching is an effective measure to conserve soil moisture. However, the existence of straw on the soil surface also affects soil temperature, which in turn influences crop growth, especially of winter crops. Five-year field experiments (2000)(2001)(2002)(2003)(2004)(2005) investigated the effects of straw mulching and straw mass on soil temperature, soil evaporation, crop growth and development, yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) at Luancheng Station on the North China Plain. Soil is a moderately well-drained loamy soil with a deep profile at the station. Two quantities of mulch were used: 3000 kg ha 21 [less mulching (LM)] and 6000 kg ha 21 [more mulching (MM)], representing half and all of the straw from the previous crop (maize). In the control (CK), the full quantity of mulch was ploughed into the top 20 cm of soil. The results showed that the existence of straw on the soil surface reduced the maximum, but increased the minimum diurnal soil temperature. When soil temperature was decreasing (from November to early February the next year), soil temperature (0-10 cm) under straw mulching was on average 0.3°C higher for LM and 0.58°C higher for MM than that without mulching (CK). During the period when soil temperature increased (from February to early April, the recovery and jointing stages of winter wheat), average daily soil temperature of 0-10 cm was 0.42°C lower for LM and 0.65°C lower for MM than that of CK. With the increase in leaf area index, the effect of mulching on soil temperature gradually disappeared. The lower soil temperature under mulch in spring delayed the development of winter wheat up to 7 days, which on average reduced the final grain yield by 5% for LM and 7% for MM compared with CK over the five seasons. Mulch reduced soil evaporation by 21% under LM and 40% under MM compared with CK, based on daily measuring of microlysimeters. However, because yield was reduced, the overall WUE was not improved by mulch.
The extended TeV gamma-ray source ARGO J2031+4157 (or MGRO J2031+41) is positionally consistent with the Cygnus Cocoon discovered by Fermi-LAT at GeV energies in the Cygnus superbubble. Reanalyzing the ARGO-YBJ data collected from 2007 November to 2013 January, the angular extension and energy spectrum of ARGO J2031+4157 are evaluated. After subtracting the contribution of the overlapping TeV sources, the ARGO-YBJ excess map is fitted with a two-dimensional Gaussian function in a square region of 10 • × 10 • , finding a source extension σ ext = 1. • 8 ± 0. • 5. The observed differential energy spectrum is dN/dE = (2.5 ± 0.4) × 10 −11 (E/1 TeV) −2.6±0.3 photons cm −2 s −1 TeV −1 , in the energy range 0.2-10 TeV. The angular extension is consistent with that of the Cygnus Cocoon as measured by Fermi-LAT and the spectrum also shows a good connection with the one measured in the 1-100 GeV energy range. These features suggest to identify ARGO J2031+4157 as the counterpart of the Cygnus Cocoon at TeV energies. The Cygnus Cocoon, located in the star-forming region of Cygnus X, is interpreted as a cocoon of freshly accelerated cosmic rays related to the Cygnus superbubble. The spectral similarity with supernova remnants (SNRs) indicates that the particle acceleration inside a superbubble is similar to that in an SNR. The spectral measurements from 1 GeV to 10 TeV allows for the first time to determine the possible spectrum slope of the underlying particle distribution. A hadronic model is adopted to explain the spectral energy distribution.
Mass excesses of short-lived A=2Z-1 nuclei (63)Ge, (65)As, (67)Se, and (71)Kr have been directly measured to be -46,921(37), -46,937(85), -46,580(67), and -46,320(141) keV, respectively. The deduced proton separation energy of -90(85) keV for (65)As shows that this nucleus is only slightly proton unbound. X-ray burst model calculations with the new mass excess of (65)As suggest that the majority of the reaction flow passes through (64)Ge via proton capture, indicating that (64)Ge is not a significant rp-process waiting point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.