Regulatory T (Treg) cells play a central role in maintaining immune homeostasis. However, little is known about the stability of Treg cells in vivo. In this study, we demonstrate that a significant percentage of cells exhibited transient or unstable Foxp3 expression. These exFoxp3+ T cells express an activated-memory T cell phenotype, and produced inflammatory cytokines. Moreover, exFoxp3 cell numbers increased in inflamed tissues under autoimmune conditions. Adoptive transfer of autoreactive exFoxp3 cells led to the rapid-onset of diabetes. Finally, T cell receptor repertoire analyses suggested that exFoxp3 cells develop from both natural and adaptive Treg cells. Thus, the generation of potentially autoreactive effector T cells as a consequence of Foxp3 instability has important implications for understanding autoimmune disease pathogenesis.
The prevention of autoimmunity requires elimination of self-reactive T cells during their development and maturation. Expression of diverse self-antigens by stromal cells in the thymus is essential to this process, and depends, in part, on the activity of the Autoimmune Regulator (Aire) gene. Here we report the identification of extrathymic Aire-expressing cells (eTACs) resident within the secondary lymphoid organs. These stromally-derived eTACs express a diverse array of unique self-antigens and are capable of interacting with and deleting naïve autoreactive T cells. Using twophoton microscopy we observe stable, antigen-specific interactions between eTACs and autoreactive T cells. We propose that such a secondary network of self-antigen-expressing stromal cells may help reinforce immune tolerance by preventing the maturation of autoreactive T cells that escape thymic negative selection.
A new regulatory T (T reg) cell–specific, FoxP3-GFP-hCre bacterial artificial chromosome transgenic mouse was crossed to a conditional Dicer knockout (KO) mouse strain to analyze the role of microRNAs (miRNAs) in the development and function of T reg cells. Although thymic T reg cells developed normally in this setting, the cells showed evidence of altered differentiation and dysfunction in the periphery. Dicer-deficient T reg lineage cells failed to remain stable, as a subset of cells down-regulated the T reg cell–specific transcription factor FoxP3, whereas the majority expressed altered levels of multiple genes and proteins (including Neuropilin 1, glucocorticoid-induced tumor necrosis factor receptor, and cytotoxic T lymphocyte antigen 4) associated with the T reg cell fingerprint. In fact, a significant percentage of the T reg lineage cells took on a T helper cell memory phenotype including increased levels of CD127, interleukin 4, and interferon γ. Importantly, Dicer-deficient T reg cells lost suppression activity in vivo; the mice rapidly developed fatal systemic autoimmune disease resembling the FoxP3 KO phenotype. These results support a central role for miRNAs in maintaining the stability of differentiated T reg cell function in vivo and homeostasis of the adaptive immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.