Results are presented from searches for the standard model Higgs boson in proton-proton collisions at root s = 7 and 8 TeV in the Compact Muon Solenoid experiment at the LHC, using data samples corresponding to integrated luminosities of up to 5.1 fb(-1) at 7 TeV and 5.3 fb(-1) at 8 TeV. The search is performed in five decay modes: gamma gamma, ZZ, W+W-, tau(+)tau(-), and b (b) over bar. An excess of events is observed above the expected background, with a local significance of 5.0 standard deviations, at a mass near 125 GeV, signalling the production of a new particle. The expected significance for a standard model Higgs boson of that mass is 5.8 standard deviations. The excess is most significant in the two decay modes with the best mass resolution, gamma gamma and ZZ; a fit to these signals gives a mass of 125.3 +/- 0.4(stat.) +/- 0.5(syst.) GeV. The decay to two photons indicates that the new particle is a boson with spin different from one. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
The ATLAS CollaborationDark matter particles, if sufficiently light, may be produced in decays of the Higgs boson. This Letter presents a statistical combination of searches for H → invisible decays where H is produced according to the Standard Model via vector boson fusion, Z( )H, and W/Z(had)H, all performed with the ATLAS detector using 36.1 fb −1 of pp collisions at a center-of-mass energy of √ s = 13 TeV at the LHC. In combination with the results at √ s = 7 and 8 TeV, an exclusion limit on the H → invisible branching ratio of 0.26 (0.17 +0.07 −0.05 ) at 95% confidence level is observed (expected). 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z-axis along the beam pipe. The x-axis points to the center of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The distance between two objects in η-φ space is ∆R = (∆η) 2 + (∆φ) 2 . Transverse momentum is defined by p T = p sin θ.
A search for new resonances decaying into a pair of jets is reported using the dataset of proton-proton collisions recorded at √ s = 13 TeV with the ATLAS detector at the Large Hadron Collider between 2015 and 2018, corresponding to an integrated luminosity of 139 fb −1. The distribution of the invariant mass of the two leading jets is examined for local excesses above a data-derived estimate of the Standard Model background. In addition to an inclusive dijet search, events with jets identified as containing b-hadrons are examined specifically. No significant excess of events above the smoothly falling background spectra is observed. The results are used to set cross-section upper limits at 95% confidence level on a range of new physics scenarios. Model-independent limits on Gaussian-shaped signals are also reported. The analysis looking at jets containing b-hadrons benefits from improvements in the jet flavour identification at high transverse momentum, which increases its sensitivity relative to the previous analysis beyond that expected from the higher integrated luminosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.