In the present study, calcium propionate (CaP) was used as feed additive in the diet of calves to investigate their effects on rumen fermentation and the development of rumen epithelium in calves. To elucidate the mechanism in which CaP improves development of calf rumen epithelium via stimulating the messenger RNA (mRNA) expression of G protein-coupled receptors, a total of 54 male Jersey calves (age=7±1 days, BW=23.1±1.2 kg) were randomly divided into three treatment groups: control without CaP supplementation (Con), 5% CaP supplementation (5% CaP) and 10% CaP supplementation (10% CaP). The experiment lasted 160 days and was divided into three feeding stages: Stage 1 (days 0 to 30), Stage 2 (days 31 to 90) and Stage 3 (days 91 to 160). Calcium propionate supplementation percentages were calculated on a dry matter basis. In total, six calves from each group were randomly selected and slaughtered on days 30, 90 and 160 at the conclusion of each experimental feeding stage. Rumen fermentation was improved with increasing concentration of CaP supplementation in calves through the first 30 days (Stage 1). No effects of CaP supplementation were observed on rumen fermentation in calves during Stage 2 (days 31 to 90). Supplementation with 5% CaP increased propionate concentration, but not acetate and butyrate in calves during Stage 3 (days 91 to 160). The rumen papillae length of calves in the 5% CaP supplementation group was greater than that of Con groups in calves after 160 days feeding. The mRNA expression of G protein-coupled receptor 41 (GPR41) and GPR43 supplemented with 5% CaP were greater than the control group and 10% CaP group in feeding 160 days calves. 5% CaP supplementation increased the mRNA expression of cyclin D1, whereas did not increase the mRNA expression of cyclin-dependent kinase 4 compared with the control group in feeding 160-day calves. These results indicate that propionate may act as a signaling molecule to improve rumen epithelium development through stimulating mRNA expression of GPR41 and GPR43.
The aim of this study was to determine the effect of calcium propionate (CaP) on rumen microbiota, fermentation indicators, and weight gain in calves both pre-and postweaning. Twenty-four newborn calves were randomly divided into 4 groups (2 × 2 factorial treatment arrangement): either pre-(90 d) or postweaning (160 d), and either without or with dietary CaP supplementation (5% dry matter). The CaP supplementation increased the body weight and rumen weight of the calves and lowered NH 3 -N concentration in the rumen. Microbiota composition was characterized by sequencing the amplicons of the bacterial and archaeal 16S rRNA genes. The CaP supplementation decreased the relative abundance of the phylum Bacteroidetes but tended to increase that of Proteobacteria. In addition, CaP supplementation decreased the diversity of bacteria and archaea in the rumen compared with the calves fed the control diet. Linear discriminant analysis of the rumen microbiota revealed that Succinivibrionaceae and Methanobrevibacter were enriched in the CaP group postweaning. A correlation was also present between the acetate to propionate ratio and the species that acted as co-occurrence network hubs, including Succiniclasticum, Treponema, and Megasphaera. In conclusion, CaP supplementation can improve body weight gain and rumen growth and alter the ruminal microbiota in calves both pre-and postweaning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.