<p><strong>Abstract.</strong> The automatic extraction of windows from photogrammetric data has achieved increasing attention in recent times. An unsupervised windows extraction approach from photogrammetric point clouds with thermal attributes is proposed in this study. First, point cloud segmentation is conducted by a popular workflow: Multiscale supervoxel generation is applied to the image-based 3D point cloud, followed by region growing and energy optimization using spatial positions and thermal attributes of the raw points. Afterwards, an object-based feature (window index) is extracted using the average thermal attribute and the size of the object. Next, thresholding is applied to extract initial window regions. Finally, several criterions are applied to further refine the extraction results. For practical validation, the approach is evaluated on an art nouveau building row façade located at Dresden, Germany.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.