Recent years have seen substantial shifts in cultural attitudes towards cannabis for medical and recreational use. However, legalizing recreational marijuana may have adverse effects on individual and public health. As the most widely used illicit agent, cannabis is commonly reported to disrupt learning and memory. Unfortunately, the molecular mechanisms underlying behavioral impairment by cannabis abuse remain poorly understood. Tetrahydrocannabinol (THC), a major component in cannabis, causes short-term effects on the visual system, but little is known about persisting visual disturbances. This study was to investigate the effects of systemic administration with THC on retina and explore its underlying mechanisms. BALB/c mice were treated with 1 or 2 mg/kg THC intraperitoneally daily for 2 months, mice treated with vehicle as negative control. The retinal function was tested by electroretinography after THC treatment. Morphology and pathology changes of retina were detected by hematoxylin and eosin staining. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect the apoptosis in photoreceptor cells. Enzyme-linked immunosorbent assay was used to show the inflammatory responses and oxidative stress. mRNA and protein changes were measured by real-time polymerase chain reaction and Western blot to explore the underlying mechanisms. Results indicated that 2-month treatment with THC caused retinal damage, evidenced by its functional loss and increased apoptosis in photoreceptor cells through inducing inflammatory responses and oxidative stress. Our study demonstrated that systemic administration with THC caused toxic effects on retinas of BALB/c mice, suggesting the potential mechanisms for the retina damage caused by cannabis abuse.
Bispecific T-cell engagers (BiTEs) are bispecific antibodies that redirect T cells to target antigen-expressing tumors. BiTEs can be secreted by T cells through genetic engineering and perform anti-tumor activity. We hypothesized that BiTE-secreting T cells could be a valuable T cell-directed therapy in solid tumors, with distinct properties in mono- or multi-valent strategies incorporating chimeric antigen receptor (CAR) T cells. Glioblastomas represent a good model for solid tumor heterogeneity and represent a significant therapeutic challenge. We detected expression of tumor-associated epidermal growth factor receptor (EGFR), EGFR variant III (EGFRvIII), and interleukin-13 receptor alpha 2 (IL13Rα2) on glioma tissues and glioma cancer stem cells. These antigens formed the basis of a multivalent approach, using a conformation-specific tumor-related EGFR targeting antibody (806) and Hu08, an IL13Rα2-targeting antibody, as the scFvs to generate new BiTE molecules. Compared with 806CAR T cells and Hu08CAR T cells, BiTE T cells demonstrated prominent activation, cytokine production, and cytotoxicity in response to target-positive gliomas. Superior response activity was also demonstrated in BiTE secreting bivalent targeting T cells compared with bivalent targeting CAR T cells, which significantly delayed tumor growth in a glioma mouse model. In summary, BiTEs secreted by mono- or multi- valent targeting T cells have potent anti-tumor activity in vitro and in vivo with significant sensitivity and specificity, demonstrating a promising strategy in solid tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.