The oxygen isotope composition of evapotranspiration (δ F ) represents an important tracer in the study of biosphere-atmosphere interactions, hydrology, paleoclimate, and carbon cycling. Here, we demonstrate direct measurement of δ F based on the eddy-covariance and tunable diode laser spectroscopy (EC-TDL) techniques. Results are presented from laboratory experiments and field measurements in agricultural ecosystems. The field measurements were obtained during the growing seasons of 2008 and 2009. Water vapour mixing ratios (χ w ) and fluxes (F) were compared using EC-TDL and traditional eddy-covariance and infrared gas analyser techniques over a soybean canopy in 2008. The results indicate that χ w and F agreed to within 1 and 6%, respectively. Measurements of δ F above a corn canopy in 2009 revealed a diurnal pattern with an expected progressive 18 O enrichment through the day ranging from about −20 before sunrise to about −5 in late afternoon. The isotopic composition of evapotranspiration was similar to the xylem water isotope composition (δ x = −7.2 ) for short periods of time during 1400-1800 LST, indicating near steady-state conditions. Finally, the isotopic forcing values (I F ) revealed a diurnal 123 308 T. J. Griffis et al.pattern with mean maximum values of 0.09 m s −1 at midday. The I F values could be described as an exponential relation of relative humidity confirming previous model calculations and measurements over a soybean canopy in 2006. These patterns and comparisons indicate that long-term continuous isotopic water vapour flux measurements based on the eddy-covariance technique are feasible and can provide new insights related to the oxygen isotope fractionation processes at the canopy scale.
Artificial spin ices (ASIs) are interacting arrays of lithographically-defined nanomagnets in which novel frustrated magnetic phases can be intentionally designed. A key emergent description of fundamental excitations in ASIs is that of magnetic monopoles -mobile quasiparticles that carry an effective magnetic charge. Here we demonstrate that the archetypal square ASI lattice can host, in specific regions of its magnetic phase diagram, high-density plasma-like regimes of mobile magnetic monopoles. By passively "listening" to spontaneous monopole noise in thermal equilibrium, we reveal their intrinsic dynamics and show that monopole kinetics are minimally correlated (that is, most diffusive) in the plasma phase. These results open the door to on-demand monopole regimes having field-tunable densities and dynamic properties, thereby providing a new paradigm for probing the physics of effective magnetic charges in synthetic matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.