Purpose: To develop a deep convolutional neural network (DCNN)‐based computer‐aided diagnosis (CAD) system for detecting the masses in digital mammographic images. Methods: A DCNN architecture, which consists of 5 convolutional layers and 3 fully connected layers, is constructed in this study. The DCNN parameters are then trained by the following two procedures. We first train the DCNN using about 1.3 million natural images for classification of 1,000 categories. Then, we modify the last fully connected layer and subsequently train the modified DCNN using 1,656 mammographic region of interest (ROI) images for two categories classification: mass and normal. Results: The trained DCNN is tested by using 198 mammographic ROI images including 99 mass images and 99 normal images. The experimental results show that the sensitivity of the mass detection is about 89.9% and the false positive is 19.2%. These results demonstrated that the DCNN has a potential for mammographic CAD. Conclusion: In recent years, the DCNN, as one of the most successful techniques in deep learning technology, made a remarkable impact on image recognition application. For medical image recognition, however, its performance is uncertainty because collecting a large amount of training image data for a particularly medical image modality is difficult. In this study, our preliminary experiments demonstrated a feasibility to apply the DCNN in mammographic CAD system. To the best of our knowledge, this study is also the first demonstration of DCNN for detecting the masses in mammographic images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.