SummaryThe Chinese indigenous pig breeds in the Taihu Lake region are the most prolific pig breeds in the world. In this study, we investigated the genetic diversity and population structure of six breeds, including Meishan, Erhualian, Mi, Fengjing, Shawutou and Jiaxing Black, in this region using whole‐genome SNP data. A high SNP with proportions of polymorphic markers ranging from 0.925 to 0.995 was exhibited by the Chinese indigenous pigs in the Taihu Lake region. The allelic richness and expected heterozygosity also were calculated and indicated that the genetic diversity of the Meishan breed was the greatest, whereas that of the Fengjing breed was the lowest. The genetic differentiation, as indicated by the fixation index, exhibited an overall mean of 0.149. Both neighbor‐joining tree and principal components analysis were able to distinguish the breeds from each other, but structure analysis indicated that the Mi and Erhualian breeds exhibited similar major signals of admixture. With this genome‐wide comprehensive survey of the genetic diversity and population structure of the indigenous Chinese pigs in the Taihu Lake region, we confirmed the rationality of the current breed classification of the pigs in this region.
The Dongxiang Blue-shelled chicken is one of the most valuable Chinese indigenous poultry breeds. However, compared to the Italian native White Leghorn, although this Chinese breed possesses numerous favorable characteristics, it also exhibits lower growth performance and fertility. Here, we utilized genotyping sequencing data obtained via genome reduction on a sequencing platform to detect 100,114 single nucleotide polymorphisms and perform further biological analysis and functional annotation. We employed cross-population extended haplotype homozygosity, eigenvector decomposition combined with genome-wide association studies (EigenGWAS), and efficient mixed-model association expedited methods to detect areas of the genome that are potential selected regions (PSR) in both chicken breeds, and performed gene ontology (GO) enrichment and quantitative trait loci (QTL) analyses annotating using the Kyoto Encyclopedia of Genes and Genomes. The results of this study revealed a total of 2424 outlier loci (p-value ,0.01), of which 2144 occur in the White Leghorn breed and 280 occur in the Dongxiang Blue-shelled chicken. These correspond to 327 and 94 PSRs containing 297 and 54 genes, respectively. The most significantly selected genes in Blue-shelled chicken are TMEM141 and CLIC3, while the SLCO1B3 gene, related to eggshell color, was identified via EigenGWAS. We show that the White Leghorn genes JARID2, RBMS3, GPC3, TRIB2, ROBO1, SAMSN1, OSBP2, and IGFALS are involved in immunity, reproduction, and growth, and thus might represent footprints of the selection process. In contrast, we identified six significantly enriched pathways in the Dongxiang Blue-shelled chicken that are related to amino acid and lipid metabolism as well as signal transduction. Our results also reveal the presence of a GO term associated with cell metabolism that occurs mainly in the White Leghorn breed, while the most significant QTL regions mapped to the Chicken QTL Database (GG_4.0) for the Dongxiang Blue-shelled breed are predominantly related to lesions, bone mineral content, and other related traits compared to tibia length and body weight (i.e., at 14, 28, 42, and 70 d) in the White Leghorn. The results of this study highlight differences in growth, immunity, and egg quality traits between the two breeds, and provide a foundation for the exploration of their genetic mechanisms.
Taihu pig breeds are the most prolific breeds of swine in the world, and they also have superior economic traits, including high resistance to disease, superior meat quality, high resistance to crude feed and a docile temperament. The formation of these phenotypic characteristics is largely a result of long-term artificial or natural selection. Therefore, exploring selection signatures in the genomes of the Taihu pigs will help us to identify porcine genes related to productivity traits, disease and behaviour. In this study, we used both intra-population (Relative Extend Haplotype Homozygosity Test (REHH)) and inter-population (the Cross-Population Extend Haplotype Homozygosity Test (XPEHH); F-STATISTICS, F ST ) methods to detect genomic regions that might be under selection process in Taihu pig breeds. As a result, we found 282 (REHH) and 112 (XPEHH) selection signature candidate regions corresponding to 159.78 Mb (6.15%) and 62.29 Mb (2.40%) genomic regions, respectively. Further investigations of the selection candidate regions revealed that many genes under these genomic regions were related to reproductive traits (such as the TLR9 gene), coat colour (such as the KIT gene) and fat metabolism (such as the CPT1A and MAML3 genes). Furthermore, gene enrichment analyses showed that genes under the selection candidate regions were significantly over-represented in pathways related to diseases, such as autoimmune thyroid and asthma diseases. In conclusion, several candidate genes potentially under positive selection were involved in characteristics of Taihu pig. These results will further allow us to better understand the mechanisms of selection in pig breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.