Shear stress-induced cleavage of cell surface CD18 integrins is reported to be part of an anti-inflammatory control mechanism that minimizes neutrophil activity in the blood under physiologic conditions. The cysteine protease, cathepsin B (catB), has been implicated in this mechanoregulatory mechanism, but its molecular dynamics remain to be elucidated. Moreover, attempts to do so using molecular approaches are hindered by the limited ex vivo life span of primary neutrophils. As an alternative, we explored the potential use of HL60-derived neutrophilic cells as a transfectable culture model that exhibits a shear-induced CD18 cleavage response comparable to primary neutrophils. HL60 cells were differentiated into neutrophil-like cells (dHL60-NCs) and exposed to laminar shear stress ([Formula: see text] for 10 min). Based on cytometric analyses, sheared cells cleaved CD18 and CD11a, but not CD11b, integrins. Treatment of cells with E64 or doxycycline prior to and during shear exposure inhibited CD18, but only attenuated CD11a, cleavage. Neither aprotinin nor pepstatin affected shear-induced CD18 or CD11a cleavage. Notably, dHL60-NCs expressed minimal catB. Thus, multiple cysteine proteases in addition to catB may cleave CD18 on sheared leukocytes. In fact, our findings indicate that multiple non-cysteine proteases also participate in the shear-related cleavage of CD11/CD18 heterodimers. Finally, shear-induced cleavage of CD18 and CD11a by dHL60-NCs was inhibited by fMLP concentrations of at least [Formula: see text]. Collectively, our findings indicate that shear-induced CD11/CD18 cleavage is phenotypic of neutrophilic cells, including those derived from HL60 cells. Moreover, our results verify shear stress as a key anti-inflammatory stimulus for neutrophils under physiologic conditions.
Generating new variants for design elements of products, structuring them into a complete configuration and evaluating the alternate configurations are essential for product design. Evaluating the likely product configurations in terms of sustainability aspects continues to become a useful aspect of interest to product designers. This paper proposes a new approach for applying the Product Sustainability Index (ProdSI) in selecting the best possible configurations for product design. In this paper, the recently developed ProdSI methodology is used to evaluate sustainability performance of a product. The approach is useful for product designers to generate numerous likely product design configurations and subsequently select the most sustainable product design configuration. An example of an armed-chair is used to illustrate the proposed new approach.
Over the past several years, studies of sphingolipid functions in the baker's yeast Saccharomyces cerevisiae have revealed that the sphingoid LCBs (long-chain bases), dihydrosphingosine and PHS (phytosphingosine), are important signalling molecules or second messengers under heat stress and during non-stressed conditions. LCBs are now recognized as regulators of AGC-type protein kinase (where AGC stands for protein kinases A, G and C) Pkh1 and Pkh2, which are homologues of mammalian phosphoinositide-dependent protein kinase 1. LCBs were previously shown to activate Pkh1 and Pkh2, which then activate the downstream protein kinase Pkc1. We have recently demonstrated that PHS stimulates Pkh1 to activate additional downstream kinases including Ypk1, Ypk2 and Sch9. We have also found that PHS acts downstream of Pkh1 and partially activates Ypk1, Ypk2 and Sch9. These kinases control a wide range of cellular processes including growth, cell wall integrity, stress resistance, endocytosis and aging. As we learn more about the cellular processes controlled by Ypk1, Ypk2 and Sch9, we will have a far greater appreciation of LCBs as second messengers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.