Abstract. We report that a volume-limited, X-ray selected AGN sample, including 49 QSO like and starburst galaxies (SBs) at the 0.1-2.4 keV flux level of £ 5.3 x 10~1 4 ergs cm _ 2 s _ 1 was formed with photometric redshifts.
:Glacier mass balance is a significant indicator of glacier accumulation and ablation state, and it also reflects the relationship between glacier and climate forcing, which have great impacts on evaluating glacier dynamics. Due to the continuous accumulation of greenhouse effect, large amount of mountain glaciers in the Qinghai-Tibet Plateau in China has been continuously depleted since 1970, especially in the East Kunlun Mountains and the inner regions of the Qinghai-Tibet Plateau. The large-scale and long-term observation of glacier mass balance is usually estimated according to the elevation change of the glacier surface by the remote sensing means of synthetic aperture radar interferometry, Lidar altimetry technology and photogrammetry using optical stereo image. In this work, we choose Malan Mountain, located in the north of Tibet Plateau, as our study area, which is one of the most ablated glacier regions in East Kunlun Mountains. To assess glacier mass change in Malan Mountain in recent two decades, we utilize SRTM DEM, TerraSAR-X/TanDEM-X, and ICESat-2 data to estimate its glacier mass balance during 2000-2012, 2012-2020, and 2000-2020. In order to obtain the true value of the long time change of glacier surface elevation, we take the following steps. Firstly, three kinds of elevation data were registered to eliminate the spatial errors, and then the penetration depth of ice in the East Kunlun Mountains was estimated by statistical method according to the difference between SRTM-X DEM and SRTM-C DEM. Finally, the accurate ice elevation change value was obtained by seasonal correction according to the seasonal change of glacier. The results show that: (1) During 2000-2020, 41 glaciers in Malan Mountain display remarkably negative mass change (-0.24 ± 0.06 m•w•e/a) and their overall elevation change is -5.64 ± 0.96 m. Besides, we also compare glacier mass change in Malan Mountain during two subperiods and we find that glacier ice mass loss rate is more apparent during 2000-2012 (-0.30 ± 0.04 m•w•e/a) than 2012-2020 (-0.22 ± 0.11 m•w•e/a). (2) Based on GPCC (Global Precipitation Climatology Center) and GHCN_CAMS (Global Historical Climatology Network) reanalysis dataset, we discover that the evidently negative mass change in Malan Mountain during 2000-2020 is mainly attributed to increasing summer temperature. Albeit slightly increasing annual precipitation for glacier ice mass accumulation in recent two decades, it still cannot compensate ice mass loss caused by increasing summer temperature. Additionally, we also find that the decreasing glacier ice mass loss rate during 2012-2020 is predominantly ascribed to decreasing summer temperature in this period. (3) According to Landsat-7 images during 2007-2012, we discover a surging glacier in the southern slope of Malan Mountain and its terminus advances approximately 251 m during this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.