Magnetoplasmonic crystals are spatially periodic nanostructured magnetic surfaces combining the features of surface plasmon polariton excitation and magneto-optical tunability. Here we present a comprehensive experimental and theoretical work demonstrating that in magnetoplasmonic crystals the coupling of free space radiation to surface plasmon polariton modes in conjunction with the inherent magneto-optical activity, enable cross-coupling of propagating surface plasmon polariton modes. We have explored the consequences of this unique magnetoplasmonic crystal optical feature by studying the light reflected from a two-dimensional periodic array of cylindrical holes in a ferromagnetic layer illuminated at oblique incidence and magnetized in the sample plane, namely, in the so-called longitudinal Kerr effect geometry. We observe that the magneto-optical spectral response arises from all the excitable surface plasmon polariton modes in the magnetoplasmonic crystal irrespective of the incoming light polarization. We show that this is a direct consequence of the magneto-optically mediated coupling of propagating surface plasmon polariton modes. We demonstrate that a large enhancement of the longitudinal Kerr effect is induced when special noncollinear surface plasmon polariton modes, which couple to both p- and s-polarized light, are resonantly excited. We show how the resonant enhancement of the Kerr effect can be set at desired radiation wavelengths and incidence angles by precise plasmonic band engineering achievable through the proper design of the magnetoplasmonic lattice structure. Our findings, besides clarifying the underlying physics that governs the peculiar magneto-optical properties of magnetoplasmonic crystals, open a path to the design of novel active metamaterials with tailored and enhanced magneto-optical activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.