In some surgical techniques like femoral derotation osteotomy, accuracy is a key factor that often is not optimal because of the lack of appropriate technology. 3D printing is emerging in many professional areas and its use in the medical field may enhance the results of certain surgeries. This case describes a patient who underwent an intramedullary nail fixation to treat a femoral shaft fracture. After nine months, the patient presented hip pain and "in toe" walking caused by a malrotation produced during the surgery. To address the consequent femoral derotation osteotomy, 3D technology was used throughout the whole process. A 3D model of the patient's femur was created to conduct a real and accuracy assessment of femoral anteversion. Then, a customized surgical guide was designed and printed to ensure the proper alignment during surgery. Given the success of this surgery, 3D printing can be considered a quick and inexpensive tool to improve surgical results.
Femoral shaft fractures are one of the most common injuries in trauma patients. The gold standard treatment consists of closed reduction and intramedullary nailing, providing a high fracture healing rate and allowing early mobilization. However, rotational malalignment is a well-known complication following this procedure, and excessive femoral anteversion or femoral retroversion can trigger functional complaints. In order to achieve the ideal degree of femoral rotation, a 3D planning and printing cutting guides procedure was developed to correct femoral malrotation. A patient series with malalignment after a femoral diaphyseal fracture was operated on with the customized guides and evaluated in this study. Computed tomography scans were performed to accurately determine the number of degrees of malrotation, allowing the design of specific and personalized surgical guides to correct these accurately. Once designed, they were produced by 3D printing. After surgery with the customized guides to correct femoral malrotation, all patients presented a normalized anteversion angle of the femur (average −10.3°, range from −5° to −15°), according to their contralateral limb. These data suggest that the use of customized cutting guides for femoral osteotomy is a safe and reproducible surgical technique that offers precise results when correcting femoral malrotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.