The aim of this paper is to derive a stable and efficient scheme for solving the one-dimensional time-fractional nonlinear Schrödinger equation set in an unbounded domain. We first derive absorbing boundary conditions for the fractional system by using the unified approach introduced in [47, 48] and a linearization procedure. Then, the initial boundary-value problem for the fractional system with ABCs is discretized, a stability analysis is developed and the error estimate O(h 2 +τ) is stated. To accelerate the L1-scheme in time, a sum-of-exponentials approximation is introduced to speed-up the evaluation of the Caputo fractional derivative. The resulting algorithm is highly efficient for long time simulations. Finally, we end the paper by reporting some numerical simulations to validate the properties (accuracy and efficiency) of the derived scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.