With the development of the internet‐of‐things for applications such as wearables and packaging, a new class of electronics is emerging, characterized by the sheer number of forecast units and their short service‐life. Projected to reach 27 billion units in 2021, connected devices are generating an exponentially increasing amount of electronic waste (e‐waste). Fueled by the growing e‐waste problem, the field of sustainable electronics is attracting significant interest. Today, standard energy‐storage technologies such as lithium‐ion or alkaline batteries still power most of smart devices. While they provide good performance, the nonrenewable and toxic materials require dedicated collection and recycling processes. Moreover, their standardized form factor and performance specifications limit the designs of smart devices. Here, exclusively disposable materials are used to fully print nontoxic supercapacitors maintaining a high capacitance of 25.6 F g−1 active material at an operating voltage up to 1.2 V. The presented combination of digital material assembly, stable high‐performance operation, and nontoxicity has the potential to open new avenues within sustainable electronics and applications such as environmental sensing, e‐textiles, and healthcare.
Emerging technologies such as smart packaging are shifting the requirements on electronic components, notably regarding service life, which counts in days instead of years. As a result, standard materials are often not adapted due to economic, environmental or manufacturing considerations. For instance, the use of metal conductive tracks in disposable electronics is a waste of valuable resources and their accumulation in landfills is an environmental concern. In this work, we report a conductive ink made of carbon particles dispersed in a solution of shellac. This natural and water-insoluble resin works as a binder, favourably replacing petroleum-derived polymers. The carbon particles provide electrical conductivity and act as a rheology modifier, creating a printable shear-thinning gel. The ink’s conductivity and sheet resistance are 1000 S m−1 and 15 Ω sq−1, respectively, and remain stable towards moisture. We show that the ink is compatible with several industry-relevant patterning methods such as screen-printing and robocasting, and demonstrate a minimum feature size of 200 μm. As a proof-of-concept, a resistor and a capacitor are printed and used as deformation and proximity sensors, respectively.
Increasing environmental concerns raised by the accumulation of electronic waste draws attention to the development of sustainable materials for short‐lived electronics. In this framework, printed capacitive humidity sensors and temperature resistive detectors composed exclusively of biodegradable materials: shellac, carbon‐derived particles, and egg‐albumin are reported. The sensor platform comprises interdigitated electrodes serving as a capacitive transducer for humidity sensing, and a serpentine used as a resistive temperature detector. Both the interdigitated and serpentine electrodes are manufactured by screen‐printing carbon ink on a shellac substrate. The humidity sensors are constructed by drop‐coating egg albumin on the interdigitated carbon electrodes and the temperature detector is prepared by encapsulating the serpentine design with shellac. Shellac is shown to be a biodegradable alternative to hydrophilic cellulose‐derived substrates, with the capacitive humidity sensors demonstrating a sensitivity of 0.011% RH−1. The response and recovery times on shellac are 12 and 20 times faster than on cellulose‐based substrate, and the serpentine resistive temperature detectors have a temperature coefficient of 5300 ppm K−1. At the end of their service‐life, the sensors produced are home compostable and can be environmentally friendly disposed, potentially enabling their future use for sustainable and environmentally friendly smart‐packaging, agricultural sensing, or point‐of‐care testing.
We developed a disposable paper battery aiming to reduce the environmental impact of single-use electronics for applications such as point of care diagnosis, smart packaging and environmental sensing. The battery uses Zinc as a biodegradable metal anode, graphite as a nontoxic cathode material and paper as a biodegradable substrate. To facilitate additive manufacturing, we developed electrodes and current collector inks that can be stencil printed on paper to create water-activated batteries of arbitrary shape and size. The battery remains inactive until water is provided and absorbed by the paper substrate, taking advantage of its natural wicking behavior. Once activated, a single cell provides an open circuit potential of 1.2 V and a peak power density of 150 µW/cm2 at 0.5 mA. As a proof of concept, we fabricated a two cell battery and used it to power an alarm clock and its liquid crystal display.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.