Monodisperse magnetite Fe 3 O 4 nanoparticles of controlled size within 6 and 20 nm in diameter were synthesized by thermal decomposition of an iron organic precursor in an organic medium. Particles were coated with oleic acid. For all samples studied, saturation magnetization M s reaches the expected value for bulk magnetite, in contrast to results in small particle systems for which M s is usually much smaller due to surface spin disorder. The coercive field for the 6 nm particles is also similar to that of bulk magnetite. Both results suggest that the oleic acid molecules covalently bonded to the nanoparticle surface yield a strong reduction in the surface spin disorder. However, although the saturated state may be similar, the approach to saturation is different and, in particular, the high-field differential susceptibility is one order of magnitude larger than in bulk materials. The relevance of these results in biomedical applications is discussed.
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. Adetailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.
Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.
This chapter is aimed at studying the anomalous magnetic properties (glassy behaviour) observed at low temperatures in nanoparticles of ferrimagnetic oxides. This topic is discussed both from numerical results and experimental data. Ferrimagnetic fine particles show most of the features of glassy systems due to the random distribution of anisotropy axis, interparticle interactions and surface effects. Experiments have shown that the hysteresis loops display high closure fields with high values of the differential susceptibility. Low magnetisation as compared to bulk, shifted loops after field-cooling, highfield irreversibilities between zero-field and field cooling processes and ageing phenomena in the time-dependence of the magnetisation, are also observed. This phenomenology indicates the existence of some kind of freezing phenomenon arising from a complex hierarchy of the energy levels, whose origin is currently under discussion. Two models have been proposed to account for it: i) the existence of a spin-glass state at the surface of the particle which is coupled to the particle core through an exchange field; and ii) the collective behaviour induced by interparticle interactions. In real systems, both contributions simultaneously occur, being difficult to distinguish their effects. In contrast, numerical simulations allow us to build a model just containing the essential ingredients to study solely one of two phenomena. Glassy behaviour in ferrimagnetic nanoparticlesThe assemblies of fine magnetic particles with large packing fractions and/or nanometric sizes show most of the features which are characteristic of glassy systems (for a recent review see Ref. [12]). This glassy behaviour results from a complex interplay between surface and finite-size effects, interparticle interactions and the random distribution of anisotropy axis throughout the system. In many cases, these contributions are mixed and in competition, Sample characterisationThe phenomenology of the glassy state in strong interacting fine particles is illustrated through the study of the magnetic properties of nanocrystalline BaFe 10.4 Co 0.8 Ti 0.8 O 19 [11]. M -type barium ferrites have been studied for a long time because of their technological applications [33,34,35,36], such as microwave devices, permanent magnets, and high-density magnetic and magneto-optic recording media, as well as their large pure research interest [37,38]. The compounds obtained by cationic substitution of the pure BaFe 12 O 19 ferrite display a large variety of magnetic properties and structures, which go from collinear ferrimagnetism to spin-glass-like behaviour [37,39,38], depending on the degree of frustration introduced by cationic substitution. In particular, the BaFe 10.4 Co 0.8 Ti 0.8 O 19 compound seems to be ideal for perpendicular magnetic recording [40], since the Co 2+ -Ti 4+ doping scheme reduces sharply the high values of the coercive field of the pure compound, which precludes their technological applications. For this composition the magnetic structur...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.