The direct negative effects of invasive plant species on agriculture and biodiversity are well known, but their indirect effects on human health, and particularly their interactions with disease-transmitting vectors, remains poorly explored. This study sought to investigate the impact of the invasive Neotropical weed Parthenium hysterophorus and its toxins on the survival and energy reserves of the malaria vector Anopheles gambiae. In this study, we compared the fitness of An. gambiae fed on three differentially attractive mosquito host plants and their major toxins; the highly aggressive invasive Neotropical weed Parthenium hysterophorus (Asteraceae) in East Africa and two other adapted weeds, Ricinus communis (Euphorbiaceae) and Bidens pilosa (Asteraceae). Our results showed that female An. gambiae fitness varied with host plants as females survived better and accumulated substantial energy reserves when fed on P. hysterophorus and R. communis compared to B. pilosa. Females tolerated parthenin and 1-phenylhepta-1, 3, 5-triyne, the toxins produced by P. hysterophorus and B. pilosa, respectively, but not ricinine produced by R. communis. Given that invasive plants like P. hysterophorus can suppress or even replace less competitive species that might be less suitable host-plants for arthropod disease vectors, the spread of invasive plants could lead to higher disease transmission. Parthenium hysterophorus represents a possible indirect effect of invasive plants on human health, which underpins the need to include an additional health dimension in risk-analysis modelling for invasive plants.
Black soldier fly (BSF) larvae, Hermetia illucens L. (Diptera: Stratiomyidae), bio‐convert organic side streams into high‐quality biomass, the composition of which largely depends on the side stream used. In the present study, BSF larvae were reared on feed substrates composed of dried brewers’ spent grains, each supplemented with either water, waste brewer’s yeast, or a mixture of waste brewer’s yeast and cane molasses to obtain 12 different substrates: barley/water, barley/yeast, barley/yeast/molasses, malted barley/water, malted barley/yeast, malted barley/yeast/molasses, malted corn/water, malted corn/yeast, malted corn/yeast/molasses, sorghum‐barley/water, sorghum‐barley/yeast, and sorghum‐barley/yeast/molasses. The crude protein, fat, ash, and mineral contents of the BSF larvae fed each feed substrate were quantified by chemical analyses. The effect of substrate, supplementation, and their interaction on crude protein, fat, and ash contents of BSF larval body composition was significant. Calcium, phosphorus, and potassium were the most abundant macrominerals in the larvae and their concentrations differed significantly among substrates. These findings provide important information to support the use of BSF larval meal as potential new source of nutrient‐rich and sustainable animal feed ingredients to substitute expensive and scarce protein sources such as fishmeal and soya bean meal.
Recently, there has been multi-agency promotion of entomophagy as an environmentally-friendly source of food for the ever increasing human population especially in the developing countries. However, food quality and safety concerns must first be addressed in this context. We addressed these concerns in the present study using the edible stink bug Encosternum delegorguei, which is widely consumed in southern Africa. We analysed for mycotoxins, and health beneficials including antioxidants, amino acids and essential fatty acids using liquid chromatography coupled to quadrupole time of flight mass spectrometry (LC-Qtof-MS) and coupled gas chromatography (GC)-MS. We also performed proximate analysis to determine nutritional components. We identified the human carcinogen mycotoxin (aflatoxin B1) at low levels in edible stink bugs that were stored in traditonally woven wooden dung smeared baskets and gunny bags previously used to store cereals. However, it was absent in insects stored in clean zip lock bags. On the other hand, we identified 10 fatty acids, of which 7 are considered essential fatty acids for human nutrition and health; 4 flavonoids and 12 amino acids of which two are considered the most limiting amino acids in cereal based diets. The edible stink bug also contained high crude protein and fats but was a poor source of minerals, except for phosphorus which was found in relatively high levels. Our results show that the edible stink bug is a nutrient- and antioxidant-rich source of food and health benefits for human consumption. As such, use of better handling and storage methods can help eliminate contamination of the edible stink bug with the carcinogen aflatoxin and ensure its safety as human food.
Globally, there is growing interest to integrate insect-derived ingredients into food products. Knowledge of consumer perception to these food products is growing rapidly in the literature, but similar knowledge on the use of oils from African edible insects remains to be established. In this study, we (1) compared the chemistry of the oils from two commonly consumed grasshoppers, the desert locust Schistocerca gregaria and the African bush-cricket Ruspolia differens with those of olive and sesame oils; (2) compared the proximate composition of a baked product (cookie) prepared from the oils; (3) identified the potential volatiles and fatty acids contributing to the aroma and taste; and (4) examined acceptance and willingness to pay (WTP) for the baked product among consumers with no previous experience of entomophagy. Our results showed that the insect oils were compositionally richer in omega-3 fatty acids, flavonoids, and vitamin E than the plant oils. Proximate analysis and volatile chemistry revealed that differences in aroma and taste of the cookies were associated with their sources of oils. Consumers’ acceptance was high for cookies prepared with R. differens (95%) and sesame (89%) oils compared to those with olive and S. gregaria oils. Notably, cookies prepared with insect oils had more than 50% dislike in aroma and taste. Consumers’ willingness to pay for cookies prepared with insect oils was 6–8 times higher than for cookies containing olive oil, but 3–4 times lower than cookies containing sesame oil. Our findings show that integrating edible insect oils into cookies, entices people to ‘‘take the first step” in entomophagy by decreasing insect-based food products neophobia, thereby, contributing to consumers’ acceptance of the baked products. However, future research should explore the use of refined or flavored insect oils for bakery products to reduce off-flavors that might have been perceived in the formulated food products
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.