We present a double-clad fiber coupler (DCFC) for use in endoscopy to reduce speckle contrast, increase signal collection and depth of field. The DCFC is made by fusing and tapering two all silica double-clad fiber (DCF) and allows achromatic transmission of >95% of core illumination (1265nm - 1325nm) as well as collection of >42% of inner cladding diffuse light. Its potential for endoscopy is demonstrated in a spectrally encoded imaging setup which shows speckle reduction by a factor 5, increased signal collection by a factor 9 and enhanced depth of field by 1.8 times. Separation by the DCFC of single- and multi-mode signals allows combining low-speckle reflectance images (25.5 fps) with interferometrically measured depth profiles (post-processed) for of small three-dimensional (3D) features through an all-fiber low loss instrument.
Losses of cladding modes are part of the mechanism of operation of a long-period grating (LPG) when it is used as an optical filter. We present a LPG computer simulation that accounts for these losses. On the basis of this simulation, we show that losses result in qualitatively different LPG spectral behavior. There is an optimal loss value that provides sidelobe-free, 100% power transfer from the core to the cladding mode for a uniform LPG. We obtained a simple equation that relates this optimum lose value to the LPG length and the cross-coupling coefficient. Based on the results, we propose new approaches to LPG design in a fiber as well as in waveguide platforms for fiber-optic communication and sensor applications. A design of a LPG reconfigurable filter is suggested.
We present an asymmetric double-clad fiber coupler (A-DCFC) exploiting a disparity in fiber etendues to exceed the equipartition limit (≤50% extraction of inner cladding multi-mode light). The A-DCFC is fabricated using two commercially available fibers and a custom fusion-tapering setup to achieve >70% extraction of multi-mode inner cladding light without affecting (>95% transmission) single-mode light propagation in the core. Imaging with the A-DCFC is demonstrated in a spectrally encoded imaging setup using a weakly backscattering biological sample. Other applications include the combination of optical coherence tomography with weak fluorescent or Raman scattering signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.