The microbial spoilage of meat and seafood products with short shelf lives is responsible for a significant amount of food waste. Food spoilage is a very heterogeneous process, involving the growth of various, poorly characterized bacterial communities. In this study, we conducted 16S ribosomal RNA gene pyrosequencing on 160 samples of fresh and spoiled foods to comparatively explore the bacterial communities associated with four meat products and four seafood products that are among the most consumed food items in Europe. We show that fresh products are contaminated in part by a microbiota similar to that found on the skin and in the gut of animals. However, this animal-derived microbiota was less prevalent and less abundant than a core microbiota, psychrotrophic in nature, mainly originated from the environment (water reservoirs). We clearly show that this core community found on meat and seafood products is the main reservoir of spoilage bacteria. We also show that storage conditions exert strong selective pressure on the initial microbiota: alpha diversity in fresh samples was 189±58 operational taxonomic units (OTUs) but dropped to 27 ± 12 OTUs in spoiled samples. The OTU assemblage associated with spoilage was shaped by low storage temperatures, packaging and the nutritional value of the food matrix itself. These factors presumably act in tandem without any hierarchical pattern. Most notably, we were also able to identify putative new clades of dominant, previously undescribed bacteria occurring on spoiled seafood, a finding that emphasizes the importance of using culture-independent methods when studying food microbiota.
Lactic acid bacteria (LAB) isolated from fish products (fresh fish, smoked and marinated fish, fish intestinal tract) were screened for bacteriocin production and immunity in conditions eliminating the effects of organic acids and hydrogen peroxide. Twenty-two isolates which were found to produce bacteriocin-like compounds were identified as Carnobacteria, Lactococci and Enterococci on the basis of morphological examination, gas production from glucose, growth temperatures, configuration of lactic acid, carbohydrates fermentation and deamination of arginine. Two Carnobacteria named V1 and V41 were selected for further studies and identified by DNA-DNA hybridization as Carnobacterium piscicola and Carnobacterium divergens, respectively. Their respective bacteriocins named piscicocin V1 and divercin V41 were heat-resistant and sensitive to various proteolytic enzymes. These bacteriocins were active against Listeria monocytogenes and exhibited a different spectrum of activity against LAB. Both bacteriocins had a bactericidal and non-bacteriolytic mode of action. Maximum production of piscicocin V1 and divercin V41 in Man Rogosa Sharpe (MRS) medium broth occurred at the beginning of the stationary phase and was higher at 20°C than at 30°C. When the cultures were maintained at pH 6.5, bacteriocin production was significantly increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.