Chilling sensitivity of maize is a strong limitation for its cultivation in the cooler areas of the northern and southern hemisphere because reduced growth in early stages impairs on later biomass accumulation. Efficient breeding for chilling tolerance is hampered by both the complex physiological response of maize to chilling temperatures and the difficulty to accurately measure chilling tolerance in the field under fluctuating climatic conditions. For this research, we used genome-wide association (GWA) mapping to identify genes underlying chilling tolerance under both controlled and field conditions in a broad germplasm collection of 375 maize inbred lines genotyped with 56 110 single nucleotide polymorphism (SNP). We identified 19 highly significant association signals explaining between 5.7 and 52.5% of the phenotypic variance observed for early growth and chlorophyll fluorescence parameters. The allelic effect of several SNPs identified for early growth was associated with temperature and incident radiation. Candidate genes involved in ethylene signalling, brassinolide, and lignin biosynthesis were found in their vicinity. The frequent involvement of candidate genes into signalling or gene expression regulation underlines the complex response of photosynthetic performance and early growth to climatic conditions, and supports pleiotropism as a major cause of co-locations of quantitative trait loci for these highly polygenic traits.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.