The demand for real-time monitoring of cell functions and cell conditions has dramatically increased with the emergence of organ-on-a-chip (OOC) systems. However, the incorporation of co-cultures and microfluidic channels in OOC systems increases their biological complexity and therefore makes the analysis and monitoring of analytical parameters inside the device more difficult. In this work, we present an approach to integrate multiple sensors in an extremely thin, porous and delicate membrane inside a liver-on-a-chip device. Specifically, three electrochemical dissolved oxygen (DO) sensors were inkjet-printed along the microfluidic channel allowing local online monitoring of oxygen concentrations. This approach demonstrates the existence of an oxygen gradient up to 17.5% for rat hepatocytes and 32.5% for human hepatocytes along the bottom channel. Such gradients are considered crucial for the appearance of zonation of the liver. Inkjet printing (IJP) was the selected technology as it allows drop on demand material deposition compatible with delicate substrates, as used in this study, which cannot withstand temperatures higher than 130 °C. For the deposition of uniform gold and silver conductive inks on the porous membrane, a primer layer using SU-8 dielectric material was used to seal the porosity of the membrane at defined areas, with the aim of building a uniform sensor device. As a proof-of-concept, experiments with cell cultures of primary human and rat hepatocytes were performed, and oxygen consumption rate was stimulated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), accelerating the basal respiration of 0.23 ± 0.07 nmol s-1/106 cells up to 5.95 ± 0.67 nmol s-1/106 cells s for rat cells and the basal respiration of 0.17 ± 0.10 nmol s-1/106 cells by up to 10.62 ± 1.15 nmol s-1/106 cells for human cells, with higher oxygen consumption of the cells seeded at the outflow zone. These results demonstrate that the approach of printing sensors inside an OOC has tremendous potential because IJP is a feasible technique for the integration of different sensors for evaluating metabolic activity of cells, and overcomes one of the major challenges still remaining on how to tap the full potential of OOC systems.
A novel microelectrode array sensor was fabricated using MEMS technology on a needle, and then applied to real-time measurement of dissolved oxygen (DO) inside biofilms. The sensor consists of eleven gold disk microelectrodes and a rectangular auxiliary electrode along them and an external & internal reference electrode. Three kinds of sensors were designed and their responses were characterized and evaluated under various environmental conditions. The arrays exhibit a linear response to DO in the 0 -8 mg L -1 concentration range in water, high sensitivity, repeatability, and low limits of detection (< 0.11 mg L -1 ) and quantification (0.38 mg L -1 ). The sensors were then validated against a commercial Clark-type microelectrode and applied to profiling of DO in a heterotrophic biofilm cultivated in a flat-plate bioreactor. It is shown that the sensor array can provide a multipoint, simultaneous snapshot profile of DO inside a biofilm with high spatial resolution due to its micrometric dimensions. We conclude that this new sensor array represents a powerful tool for sensing of DO biofilms and in numerous bioprocesses.
Biodegradation process modeling is an essential tool for the optimization of biotechnologies related to gaseous pollutants treatment. In these technologies, the predominant role of biofilm, particularly under conditions of no mass transfer limitations, results in a need to determine what processes are occurring within the same. By measuring the interior of the biofilms, an increased knowledge of mass transport and biodegradation processes may be attained. This information is useful in order to develop more reliable models that take biofilm heterogeneity into account. In this study, a new methodology, based on a novel dissolved oxygen (DO) and mass transport microelectronic array (MEA) sensor, is presented in order to characterize a biofilm. Utilizing the MEA sensor, designed to obtain DO and diffusivity profiles with a single measurement, it was possible to obtain distributions of oxygen diffusivity and biokinetic parameters along a biofilm grown in a flat plate bioreactor (FPB). The results obtained for oxygen diffusivity, estimated from oxygenation profiles and direct measurements, revealed that changes in its distribution were reduced when increasing the liquid flow rate. It was also possible to observe the effect of biofilm heterogeneity through biokinetic parameters, estimated using the DO profiles. Biokinetic parameters, including maximum specific growth rate, the Monod half-saturation coefficient of oxygen and the maintenance coefficient for oxygen which showed a marked variation across the biofilm, suggest that a tool that considers the heterogeneity of biofilms is essential for the optimization of biotechnologies.2
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.