Effective charge compensation of europium in hafnium oxide nanoparticles was achieved at low temperature, allowing high doping incorporation (up to 6 at.%) and enhanced luminescence. The efficiency of the incorporation and charge compensation was confirmed by scanning electron microscope energy dispersive X-ray spectroscopy and powder X-ray diffraction measurements. Despite the known polymorphism of hafnium oxide, when doped to a concentration above 3 at.%, only the pure monoclinic phase was observed up to 6 at.% of europium. Furthermore, the low-temperature solvothermal route allowed the direct formation of stable dispersions of the synthesized material over a wide range of concentrations in aqueous media. The dispersions were studied by diffuse light scattering (DLS) to evaluate their quality and by photoluminescence to investigate the incorporation of the dopants into the lattice.
In this article, a versatile process based on microwave‐assisted sol–gel synthesis is introduced in order to apply a surface coating on cathode material for lithium‐ion batteries. Here, a nano‐scaled ZnO:Al (AZO) layer is coated homogeneously onto Li(Ni1/3Mn1/3Co1/3)O2 (NMC111) powder at temperatures below 210°C within a few minutes. In contrast to other wet‐chemical coating techniques, the method described here is conducted in a one‐pot reaction and does not require a post‐annealing step at elevated temperatures. Investigations via high resolution transmission electron microscopy (HR‐TEM), scanning transmission electron microscopy (STEM) and inductively‐coupled plasma optical emission spectroscopy (ICP‐OES) promote a thorough understanding of coating microstructure and quality in dependence of reaction temperature, duration and precursor concentration. The AZO protective coating on NMC111 significantly reduces capacity fading during cycling in the voltage range of 3.0‐4.5 V. Furthermore, applying optimal quantities of the coating agent on NMC111 lead to enhanced specific capacities compared to the uncoated material.
Complexes of poly(phenylene methylene) (PPM) with silver(I) ions and tricarbonylchromium(0) moieties, respectively, were synthesized. 13C NMR spectra indicate interaction of phenylene groups with silver(I) and chromium(0), and peak broadening implies dynamic behavior of the silver(I) complexes, with all phenylene groups temporarily involved in coordination, in contrast to the chromium complexes. About 5–10% of the phenylene groups are coordinated to metal atoms. 1H NMR and IR spectra, in the case of chromium(0), and the solubility of silver salts in the presence of PPM provide further evidence of coordination. The complexes are soluble in chloroform, but the silver complexes decay in tetrahydrofuran (second-order kinetics were observed in an example). The photoluminescence (fluorescence) of PPM is maintained upon complexation, although coordination of silver(I) seems to favor the so-called blue phase of PPM relative to the green phase by a factor of approximately two in PL spectra. The pronounced absorption of the tricarbonylchromium(0) units interferes with the blue phase, which almost disappears at a concentration of 50 mg/mL in PLE spectra, whereas the emission maximum of the green phase is hardly affected. This leads to a confinement of the emitted wavelength range of PPM. Thus, the perceived optical emission of PPM can be modified by coordinated entities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.