BackgroundCancer seems to have an independent adverse prognostic effect on COVID-19-related mortality, but uncertainty exists regarding its effect across different patient subgroups. We report a population-based analysis of patients hospitalised with COVID-19 with prior or current solid cancer versus those without cancer.MethodsWe analysed data of adult patients registered until 24 May 2020 in the Belgian nationwide database of Sciensano. The primary objective was in-hospital mortality within 30 days of COVID-19 diagnosis among patients with solid cancer versus patients without cancer. Severe event occurrence, a composite of intensive care unit admission, invasive ventilation and/or death, was a secondary objective. These endpoints were analysed across different patient subgroups. Multivariable logistic regression models were used to analyse the association between cancer and clinical characteristics (baseline analysis) and the effect of cancer on in-hospital mortality and on severe event occurrence, adjusting for clinical characteristics (in-hospital analysis).ResultsA total of 13 594 patients (of whom 1187 with solid cancer (8.7%)) were evaluable for the baseline analysis and 10 486 (892 with solid cancer (8.5%)) for the in-hospital analysis. Patients with cancer were older and presented with less symptoms/signs and lung imaging alterations. The 30-day in-hospital mortality was higher in patients with solid cancer compared with patients without cancer (31.7% vs 20.0%, respectively; adjusted OR (aOR) 1.34; 95% CI 1.13 to 1.58). The aOR was 3.84 (95% CI 1.94 to 7.59) among younger patients (<60 years) and 2.27 (95% CI 1.41 to 3.64) among patients without other comorbidities. Severe event occurrence was similar in both groups (36.7% vs 28.8%; aOR 1.10; 95% CI 0.95 to 1.29).ConclusionsThis population-based analysis demonstrates that solid cancer is an independent adverse prognostic factor for in-hospital mortality among patients with COVID-19. This adverse effect was more pronounced among younger patients and those without other comorbidities. Patients with solid cancer should be prioritised in vaccination campaigns and in tailored containment measurements.
Background Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. Methods We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015–20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Findings 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2–11·2] per 100 000 person-months) and adults older than 65 years (2·6 [2·1–3·2] per 100 000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. Interpretation The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patie...
We observed two cases of Clostridium tertium bacteremia three months apart in the sterile unit of our department of hematology and oncology. One patient was being treated for first-relapse acute myeloblastic leukemia, while the second was receiving high-dose chemotherapy with hematopoietic stem cell support for non-Hodgkin lymphoma. At the time that C. tertium was identified, the first patient was completely asymptomatic, while the second was highly febrile. Both responded biologically and/or clinically to antibiotherapy. We discuss the epidemiology and pathology of C. tertium in the general and cancer patient population.
The most likely course of events favours an initial prolonged hypoglycaemic coma following insulin overdose. The hippocampal injury may be a result of hypoglycaemia. Neuropsychological testing and MRI abnormalities were completely reversible. This case underlines the potential risks of intensive insulin therapy.
Background Seasonal influenza-like illness (ILI) affects millions of people yearly. Severe acute respiratory infections (SARI), mainly influenza, are a leading cause of hospitalisation and mortality. Increasing evidence indicates that non-influenza respiratory viruses (NIRV) also contribute to the burden of SARI. In Belgium, SARI surveillance by a network of sentinel hospitals has been ongoing since 2011. Aim We report the results of using in-house multiplex qPCR for the detection of a flexible panel of viruses in respiratory ILI and SARI samples and the estimated incidence rates of SARI associated with each virus. Methods We defined ILI as an illness with onset of fever and cough or dyspnoea. SARI was defined as an illness requiring hospitalisation with onset of fever and cough or dyspnoea within the previous 10 days. Samples were collected in four winter seasons and tested by multiplex qPCR for influenza virus and NIRV. Using catchment population estimates, we calculated incidence rates of SARI associated with each virus. Results One third of the SARI cases were positive for NIRV, reaching 49.4% among children younger than 15 years. In children younger than 5 years, incidence rates of NIRV-associated SARI were twice that of influenza (103.5 vs 57.6/100,000 person-months); co-infections with several NIRV, respiratory syncytial viruses, human metapneumoviruses and picornaviruses contributed most (33.1, 13.6, 15.8 and 18.2/100,000 person-months, respectively). Conclusion Early testing for NIRV could be beneficial to clinical management of SARI patients, especially in children younger than 5 years, for whom the burden of NIRV-associated disease exceeds that of influenza.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.