Abstract. Emission tomography has provided a new insight in brain mechanisms past years. Although reconstructions are nowadays mostly static, trend is going toward dynamic acquisitions and reconstructions. This opens a new range of investigations, for instance for drugs discovery. Indeed new drugs are studied through the dynamic ability of tissues to catch them. However, it is required to know radiotracer concentration of blood that irrigates tissues in order to draw conclusions on potentials of these drugs. This concentration is called 'input function' and this paper presents a new method for measuring it in a non-invasive way.Our new method relies on simultaneous estimations of vessels kinetics and vessels spatial distribution. These estimations are performed during the reconstruction process and take into account the statistical nature of measured signals. Indeed, this method is based on the maximisation of the likelihood of counts in detectors. It takes advantages of a nonnegative matrix factorisation which separate spatial and temporal components. Results are very promising, since it estimates arterial input function accurately although object emits just a limited amount of photons, especially within the first minutes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.