In magnetic configurations with two or three q=1 (with q being the safety factor) resonant surfaces in a tokamak plasma, resistive magnetohydrodynamic modes with poloidal mode numbers m much larger than 1 are found to be linearly unstable. It is found that these high-m double or triple tearing modes significantly enhance through nonlinear interactions the growth of the m=1 mode. This may account for the sudden onset of the internal resistive kink, i.e., the fast sawtooth trigger. Based on the subsequent reconnection dynamics that can proceed without formation of the m=1 islands, it is proposed that high-m triple tearing modes are a possible mechanism for precursor-free partial collapses during sawtooth oscillations.
We investigate the dynamics of many-body long-range interacting systems, taking the Hamiltonian mean-field model as a case study. We show that regular trajectories, associated with invariant tori of the single-particle dynamics, prevail. The presence of such tori provides a dynamical interpretation of the emergence of long-lasting out-of-equilibrium regimes observed generically in long-range systems. This is alternative to a previous statistical mechanics approach to such phenomena which was based on a maximum entropy principle. Previously detected out-of-equilibrium phase transitions are also reinterpreted within this framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.