Cydia pomonella granulovirus (CpGV) has been used for 15 years as a bioinsecticide in codling moth (Cydia pomonella) control. In 2004, some insect populations with low susceptibility to the virus were detected for the first time in southeast France. RGV, a laboratory colony of codling moths resistant to the CpGV-M isolate used in the field, was established with collection of resistant insects in the field followed by an introgression of the resistant trait into a susceptible colony (Sv). The resistance level (based on the 50% lethal concentrations [LC 50 s]) of the RGV colony to the CpGV-M isolate, the active ingredient in all commercial virus formulations in Europe, appeared to be over 60,000-fold compared to the Sv colony. The efficiency of CpGV isolates from various other regions was tested on RGV. Among them, two isolates (I12 and NPP-R1) presented an increased pathogenicity on RGV. I12 had already been identified as effective against a resistant C. pomonella colony in Germany and was observed to partially overcome the resistance in the RGV colony. The recently identified isolate NPP-R1 showed an even higher pathogenicity on RGV than other isolates, with an LC 50 of 166 occlusion bodies (OBs)/l, compared to 1.36 ؋ 10 6 OBs/l for CpGV-M. Genetic characterization showed that NPP-R1 is a mixture of at least two genotypes, one of which is similar to CpGV-M. The 2016-r4 isolate obtained from four successive passages of NPP-R1 in RGV larvae had a sharply reduced proportion of the CpGV-M-like genotype and an increased pathogenicity against insects from the RGV colony.
Tecia solanivora (Lepidoptera: Gelechiidae) is an invasive potato pest of the north of South America that recently colonized zones where Phthorimaea operculella (Lepidoptera: Gelechiidae), a taxonomically related insect, was established. Nowadays, both species can be found in most areas in different proportions. The Phthorimaea operculella granulovirus (PhopGV) was found to efficiently control P. operculella and was used as a biopesticide in storage conditions. However, no appropriate biological control methods exist for T. solanivora, and the use of granulovirus isolates would provide a solution. The Colombian Corporation for Agricultural Research (CORPOICA) carried out several T. solanivora larva samplings in Colombia with the aim of finding potential isolates. Five geographical granulovirus isolates from T. solanivora (VG001, VG002, VG003, VG004, and VG005) were found, and molecular analysis by REN profiles shows three different genotypic variants in Colombia. Analysis of their genomes revealed their relatedness to PhopGV. Two isolates exhibited submolar bands in their REN patterns, suggesting a mixture of viral genotypes. These data were confirmed by PCR amplification and sequencing of particular regions of the viral genomes. Their biological activity was assayed on both hosts, T. solanivora and P. operculella. A significantly higher pathogenicity in both hosts was observed with isolates VG001 and VG005 than with isolate VG003 or a Peruvian isolate (from P. operculella) used as a reference in the bioassay. Based on their molecular and biological activity characteristics, VG001 and VG005 isolates should be selected for further analysis in order to establish their potential as biological control agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.