During the last glaciation, most of the British Isles and the surrounding continental shelf were covered by the BritishIrish Ice Sheet (BIIS). An earlier compilation from the existing literature (BRITICE version 1) assembled the relevant glacial geomorphological evidence into a freely available GIS geodatabase and map (Clark et al. 2004: Boreas 33, 359). New high-resolution digital elevation models, of the land and seabed, have become available casting the glacial landform record of the British Isles in a new light and highlighting the shortcomings of the V.1 BRITICE compilation. Here we present awholesale revision of the evidence, onshore and offshore, to produce BRITICE version 2, which now also includes Ireland. All published geomorphological evidence pertinent to the behaviour of the ice sheet is included, up to the census date of December 2015. The revised GIS database contains over 170 000 geospatially referenced and attributed elements -an eightfold increase in information from the previous version. The compiled data include: drumlins, ribbed moraine, crag-and-tails, mega-scale glacial lineations, glacially streamlined bedrock (grooves, roches moutonn ees, whalebacks), glacial erratics, eskers, meltwater channels (subglacial, lateral, proglacial and tunnel valleys), moraines, trimlines, cirques, trough-mouth fans and evidence defining ice-dammed lakes. The increased volume of features necessitates different map/database products with varying levels of data generalization, namely: (i) an unfiltered GIS database containing all mapping; (ii) a filtered GIS database, resolving data conflicts and with edits to improve geo-locational accuracy (available as GIS data and PDF maps); and (iii) a cartographically generalized map to provide an overviewof the distribution and types of features at the ice-sheet scale that can be printed at A0 paper size at a 1:1 250 000 scale. All GIS data, the maps (as PDFs) and a bibliography of all published sources are available for download from: https://www.sheffield.ac.uk/geography/staff/clark_chris/britice. Palaeo-ice sheets provide the opportunity to study icesheet behaviour over a longer time period (10 000s of years) than can be achieved by studying current ice sheets (10s of years) thereby permitting exploration of the long-term role of ice sheets in the climate system. The extent, geometry and dynamics of palaeo-ice sheets can be reconstructed from the geomorphological and geological evidence they leave behind, with the mapping, logging and description of such evidence being the vital ingredients. For many palaeo-ice sheets, such as the British-Irish Ice Sheet (BIIS), the accumulation of evidence at individual field-sites has been ongoing for well over 100 years (e.g. Geikie 1894) yielding thousands of publications. Using such work to build local to regional reconstructions of ice dynamics is feasible, but at the ice-sheet scale the volume of information becomes unmanageable. Often the information is spread across so many publications and across many decades of work, where...
Landslides are one of the most widespread geohazards in Europe, producing significant social and economic impacts. Rapid population growth in urban areas throughout many countries in Europe and extreme climatic scenarios can considerably increase landslide risk in the near future. Variability exists between European countries in both the statutory treatment of landslide risk and the use of official assessment guidelines. This suggests that a European Landslides Directive that provides a common legal framework for dealing with landslides is necessary. With this long-term goal in mind, this work analyzes the landslide databases from the Geological Surveys of Europe focusing on their interoperability and completeness. The same landslide classification could be used for the 849,543 landslide records from the Geological Surveys, from which 36% are slides, 10% are falls, 20% are flows, 11% are complex slides, and 24% either remain unclassified or correspond to another typology. Most of them are mapped with the same symbol at a scale of 1:25,000 or greater, providing the necessary information to elaborate European-scale susceptibility maps for each landslide type. A landslide density map was produced for the available records from the Geological Surveys (LANDEN map) showing, for the first time, 210,544km 2 landslide-prone areas and 23,681 administrative areas where the Geological Surveys from Europe have recorded landslides. The comparison of this map with the European landslide susceptibility map (ELSUS 1000 v1) is successful for most of the territory (69.7%) showing certain variability between countries. This comparison also permitted the identification of 0.98Mkm 2 (28.9%) of landslide-susceptible areas without records from the Geological Surveys, which have been used to evaluate the landslide database completeness. The estimated completeness of the landslide databases (LDBs) from the Geological Surveys is 17%, varying between 1 and 55%. This variability is due to the different landslide strategies adopted by each country. In some of them, landslide mapping is systematic; others only record damaging landslides, whereas in others, landslide maps are only available for certain regions or local areas. Moreover, in most of the countries, LDBs from the Geological Surveys co-exist with others owned by a variety of public institutions producing LDBs at variable scales and formats. Hence, a greater coordination effort should be made by all the institutions working in landslide mapping to increase data integration and harmonization.
a b s t r a c t a r t i c l e i n f oGeophysical techniques Electrical Resistivity Tomography (ERT) and Ground Penetrating Radar (GPR) supported by traditional field methods are used for the geological mapping, description and interpretation of Quaternary unconsolidated sediments in a site located in the Midlands of Ireland. The site comprises a broad range of glacial and postglacial sediments (diamicton, esker sand and gravel, glaciolacustrine sand, glaciolacustrine silt/clay and peat). Preliminary fieldwork comprising, geomorphological mapping, lithostratigraphic analysis of exposures and borehole drilling and laboratory testing encompassing particle size distribution analysis were carried out to broadly characterise the geology of the study area. These data aided locating the geophysical profiles and supported the geophysical data interpretation. Five GPR radargrams were collected and permitted depicting the subsurface internal architecture within low conductivity unconsolidated sediments and aided to the classification and characterisation of sedimentological and deformational structures. Four ERT profiles allowed the depth to bedrock to be determined and lithological classification of the sediments. The use of these geophysical techniques in combination with geotechnical and geological data allowed (i) the determination of the lithological composition and detailed internal architecture of the subsurface, (ii) the characterisation and description of the geology of the site and (iii) understanding the depositional processes acting in the area during ice withdrawal. Diamicton and esker gravels were deposited subglacially by an ice sheet withdrawing westwards; glaciolacustrine sediments located along the south margin of the esker ridge were laid down in an ice marginal environment as a subaqueous fan composed of silt, sand and gravel, and as distal deposits composed of silt and clay in the lower ground area between the fan and the esker ridge. Peat developed during postglacial times and was partially cut away by anthropogenic action at a later stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.