The cloning, purification, and initial characterization of the β-carbonic anhydrase (CA, EC 4.2.1.1) from the genome of the opportunistic pathogen Malassezia restricta (MreCA), which a fungus involved in dandruff and seborrheic dermatitis (SD), is reported. MreCA is a protein consisting of 230 amino acid residues and shows high catalytic activity for the hydration of CO2 into bicarbonate and protons, with the following kinetic parameters: kcat of 1.06 × 106 s−1 and kcat/KM of 1.07 × 108 M−1 s−1. It is also sensitive to inhibition by the sulfonamide acetazolamide (KI of 50.7 nM). Phylogenetically, MreCA and other CAs from various Malassezia species seem to be on a different branch, distinct from that of other β-CAs found in fungi, such as Candida spp., Saccharomyces cerevisiae, Aspergillus fumigatus, and Sordaria macrospora, with only Cryptococcus neoformans and Ustilago maydis enzymes clustering near MreCA. The further characterization of this enzyme and the identification of inhibitors that may interfere with its life cycle might constitute new strategies for fighting dandruff and SD.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The critical CO2 hydration reaction to bicarbonate and protons is catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1). Their physiological role is to assist the transport of the CO2 and HCO3− at the cellular level, which will not be ensured by the low velocity of the uncatalyzed reaction. CA inhibition may impair the growth of microorganisms. In the yeasts, Candida albicans and Malassezia globosa, the activity of the unique β-CA identified in their genomes was demonstrated to be essential for growth of the pathogen. Here, we decided to investigate the sulfonamide inhibition profile of the homologous β-CA (MreCA) identified in the genome of Malassezia restricta, an opportunistic pathogen triggering dandruff and seborrheic dermatitis. Among 40 investigated derivatives, the best MreCA sulfonamide inhibitors were dorzolamide, brinzolamide, indisulam, valdecoxib, sulthiam, and acetazolamide (KI < 1.0 μM). The MreCA inhibition profile was different from those of the homologous enzyme from Malassezia globosa (MgCA) and the human isoenzymes (hCA I and hCA II). These results might be useful to for designing CA inhibitor scaffolds that may selectively inhibit the dandruff-producing fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.