Severe malaria (SM) is a major public health problem in malaria-endemic countries. Sequestration of Plasmodium falciparum –infected erythrocytes in vital organs and the associated inflammation leads to organ dysfunction. MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of SM. We applied next-generation sequencing to evaluate the differential expression of miRNAs in SM and in uncomplicated malaria (UM) in children in Mozambique. Six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. Relative expression of hsa-miR-4497 quantified by TaqMan-quantitative reverse transcription PCR was higher in plasma of children with SM than those with UM (p<0.048) and again correlated with P. falciparum biomass (p = 0.033). These findings suggest that different physiopathological processes in SM and UM lead to differential expression of miRNAs and suggest a pathway for assessing their prognostic value malaria.
Background While sub-microscopic malarial infections are frequent and potentially deleterious during pregnancy, routine molecular detection is still not feasible. This study aimed to assess the performance of a Histidine Rich Protein 2 (HRP2)-based ultrasensitive rapid diagnostic test (uRDT, Alere Malaria Ag Pf) for the detection of infections of low parasite density in pregnant women. Methods This was a retrospective study based on samples collected in Benin from 2014 to 2017. A total of 942 whole blood samples collected in 327 women in the 1st and 3rd trimesters and at delivery were tested by uRDT, conventional RDT (cRDT, SD BIOLINE Malaria Ag Pf), microscopy, quantitative polymerase chain-reaction (qPCR) and Luminex-based suspension array technology targeting P. falciparum HRP2. The performance of each RDT was evaluated using qPCR as reference standard. The association between infections detected by uRDT, but not by cRDT, with poor maternal and birth outcomes was assessed using multivariate regression models. Results The overall positivity rate detected by cRDT, uRDT, and qPCR was 11.6% (109/942), 16.2% (153/942) and 18.3% (172/942), respectively. Out of 172 qPCR-positive samples, 68 were uRDT-negative. uRDT had a significantly better sensitivity (60.5% [52.7–67.8]) than cRDT (44.2% [36.6–51.9]) and a marginally decreased specificity (93.6% [91.7–95.3] versus 95.7% [94.0–97.0]). The gain in sensitivity was particularly high (33%) and statistically significant in the 1st trimester. Only 28 (41%) out of the 68 samples which were qPCR-positive, but uRDT-negative had detectable but very low levels of HRP2 (191 ng/mL). Infections that were detected by uRDT but not by cRDT were associated with a 3.4-times (95%CI 1.29–9.19) increased risk of anaemia during pregnancy. Conclusions This study demonstrates the higher performance of uRDT, as compared to cRDTs, to detect low parasite density P. falciparum infections during pregnancy, particularly in the 1st trimester. uRDT allowed the detection of infections associated with maternal anaemia.
Background: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. Results: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. Conclusion: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.