In this paper, we present OmpSs, a programming model based on OpenMP and StarSs, that can also incorporate the use of OpenCL or CUDA kernels. We evaluate the proposal on different architectures, SMP, GPUs, and hybrid SMP/GPU environments, showing the wide usefulness of the approach. The evaluation is done with six different benchmarks, Matrix Multiply, BlackScholes, Perlin Noise, Julia Set, PBPI and FixedGrid. We compare the results obtained with the execution of the same benchmarks written in OpenCL or OpenMP, on the same architectures. The results show that OmpSs greatly outperforms both environments. With the use of OmpSs the programming environment is more flexible than traditional approaches to exploit multiple accelerators, and due to the simplicity of the annotations, it increases programmer's productivity.
Abstract-Traditional parallel applications have exploited regular parallelism, based on parallel loops. Only a few applications exploit sections parallelism. With the release of the new OpenMP specification (3.0), this programming model supports tasking. Parallel tasks allow the exploitation of irregular parallelism, but there is a lack of benchmarks exploiting tasks in OpenMP.With the current (and projected) multicore architectures that offer many more alternatives to execute parallel applications than traditional SMP machines, this kind of parallelism is increasingly important. And so, the need to have some set of benchmarks to evaluate it.In this paper, we motivate the need of having such a benchmarks suite, for irregular and/or recursive task parallelism. We present our proposal, the Barcelona OpenMP Tasks Suite (BOTS), with a set of applications exploiting regular and irregular parallelism, based on tasks.We present an overall evaluation of the BOTS benchmarks in an Altix system and we discuss some of the different experiments that can be done with the different compilation and runtime alternatives of the benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.