Globally, cleaner cooking fuels are increasingly promoted to reduce household air pollution. However, there is concern that reductions in smoke from biomass fuels could lead to more favorable conditions for mosquitoes and potentially increase vectorborne disease risk. We investigated household entry, host-seeking, household exit, and mortality among Anopheles mosquitoes across three cooking fuel types: wood, charcoal, and liquid petroleum gas (LPG) in six experimental huts in Rwanda. Fifty laboratory-reared Anopheles gambiae mosquitoes were released each night in entry compartments outside each hut, and fuels were burned for 1 hour in the hut verandas. Collectors conducted human landing catch during cooking and for 2 hours afterward, and CDC light traps were used for the rest of the night to measure host-seeking. Differences in each outcome were assessed using generalized linear mixed models with random effects for hut, collector, and day. Cooking with LPG compared with wood and charcoal was associated with substantial increases in household entry and host-seeking. Household exit was not significantly different across fuels, and mortality was lower in LPG-burning huts compared with wood. Although these results are not directly generalizable to field conditions, they indicate a potential for clean fuel adoption to increase exposure to Anopheles mosquitoes compared with traditional biomass fuels. Additional entomological and epidemiological studies are needed to investigate changes in disease vector exposure associated with clean fuel adoption, and evaluate whether enhanced vector control interventions should be promoted in tandem with cleaner cooking fuels.
Background Many countries, including Rwanda, have mosquito monitoring programmes in place to support decision making in the fight against malaria. However, these programmes can be costly, and require technical (entomological) expertise. Involving citizens in data collection can greatly support such activities, but this has not yet been thoroughly investigated in a rural African context. Methods Prior to the implementation of such a citizen-science approach, a household entomological survey was conducted in October–November 2017 and repeated one year later in Busoro and Ruhuha sectors, in southern and eastern province of Rwanda, respectively. The goal was to evaluate the perception of mosquito nuisance reported by citizens as a potential indicator for malaria vector hotspots. Firstly, mosquito abundance and species composition were determined using Centers for Disease Control and Prevention (CDC) light traps inside the houses. Secondly, household members were interviewed about malaria risk factors and their perceived level of mosquito nuisance. Results Tiled roofs, walls made of mud and wood, as well as the number of occupants in the house were predictors for the number of mosquitoes (Culicidae) in the houses, while the presence of eaves plus walls made of mud and wood were predictors for malaria vector abundance. Perception of mosquito nuisance reported indoors tended to be significantly correlated with the number of Anopheles gambiae sensu lato (s.l.) and Culicidae collected indoors, but this varied across years and sectors. At the village level, nuisance also significantly correlated with An. gambiae s.l. and total mosquito density, but only in 2018 while not in 2017. Conclusions Perception of mosquito nuisance denoted in a questionnaire survey could be used as a global indicator of malaria vector hotspots. Hence, involving citizens in such activities can complement malaria vector surveillance and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.